
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Towards daily maximum heat index estimation
across the conterminous United States using
satellite-derived products

Timothy Pede & Giorgos Mountrakis

To cite this article: Timothy Pede & Giorgos Mountrakis (2022) Towards daily maximum
heat index estimation across the conterminous United States using satellite-derived products,
International Journal of Remote Sensing, 43:8, 2861-2884, DOI: 10.1080/01431161.2022.2072180

To link to this article:  https://doi.org/10.1080/01431161.2022.2072180

View supplementary material 

Published online: 31 May 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2022.2072180
https://doi.org/10.1080/01431161.2022.2072180
https://www.tandfonline.com/doi/suppl/10.1080/01431161.2022.2072180
https://www.tandfonline.com/doi/suppl/10.1080/01431161.2022.2072180
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2022.2072180
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2022.2072180
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2022.2072180&domain=pdf&date_stamp=2022-05-31
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2022.2072180&domain=pdf&date_stamp=2022-05-31


Towards daily maximum heat index estimation across the 
conterminous United States using satellite-derived products
Timothy Pede and Giorgos Mountrakis

Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 
Syracuse, New York, USA

ABSTRACT
Satellite-derived land surface temperature (LST) is widely utilized to 
study urban heat islands in the context of human health and 
thermal exposure. However, there is growing evidence to suggest 
that LST may be a poor indicator of apparent temperature, or the 
human-perceived equivalent temperature that reflects both heat 
and humidity. Moreover, heat index (HI), the apparent temperature 
metric used by the US National Weather Service, has yet to be 
computed at an increased spatial resolution and coverage beyond 
weather station observations. The goals of this study were to: 1) 
assess the extent to which HI can be estimated by a combination of 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor 
and other satellite-derived products available at continental scales, 
and 2) determine which factors are most important in this estima-
tion. Specifically, daily maximum 1-km HI from May through 
September of 2012 was modelled across the conterminous United 
States as a function of MODIS LST, precipitable water vapor (PWV), 
and near-infrared indices, in addition to static variables capturing 
land cover, topographic, and locational factors.The derived model 
was capable of estimating HI within a reasonable level of error (R2 = 
0.83, RMSE = 4.4°F). This is the first time that HI has been directly 
estimated using exclusively remotely sensed products and vali-
dated over a large spatial extent. Analysis of individual variables 
indicated that LST and PWV were, by far, the most important factors 
for estimation. However, the incorporation of additional parameters 
further improved model performance (R2: +0.14, RMSE: -1.6°F). We 
hope that our work will eventually result in a national HI product 
assisting researchers in a variety of fields, including epidemiology, 
building energy demand, and environmental justice. Further work 
to interpolate cloud-contaminated satellite observations and 
downscale estimates to a 60-m resolution would considerably 
increase the utility of this HI estimation methodology.
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1. Introduction

On an average annual basis, extreme heat is the deadliest natural disaster in the US, 
killing 600 people per year (US Centre for Disease Control and Prevention (CDC) (2013)). 
Projections indicate that heat waves will become more frequent, more severe, and 
longer lasting in the US (US Meehl 2004). Heat Index (HI) is the standard apparent 
temperature metric used by the US National Weather Service (US NWS) and based on 
extensive biometeorology studies (Steadman 1979; Rothsfuz 1990). HI is computed as 
a 2nd order polynomial function of air temperature and humidity (US National Weather 
Service (US NWS) (2014)). The US NWS advises caution with HIs above 80°F, as pro-
longed exposure or physical activity can lead to heat exhaustion. Sunstroke is possible 
for HIs above 90°F and highly likely for HIs above 105°F (US National Weather Service 
(US NWS) (2019)).

A spatially explicit HI product derived from satellite imagery would allow for the study 
of variation in heating trends and thermal exposure across metropolitan and rural areas at 
a much higher spatial resolution than provided by in-situ weather stations. While weather 
stations are available, especially in developed regions, the vast majority do not record 
humidity. For instance, the Global Historic Climatology Network contains over 10,000 
stations for the conterminous Unites States (CONUS) but does not contain humidity 
observations. This compares to the Local Climatology Dataset that does include humidity, 
but only encompasses 1,400 stations. Thus, to date, high resolution HI information has 
been limited. Several areas of research could benefit from this information and include:

(1) Heat-related illness and identifying heat vulnerable populations (i.e., Klein 
Rosenthal, Kinney and Metzger 2014; Sabrin, Karimi and Nazari 2020).

(2) Forecasting peak electrical demand and assessing grid vulnerability (i.e., 
Auffhammer and Mansur 2016; Ortiz, González and Lin 2018; Maia-Silva, Kumar 
and Nateghi 2020).

(3) Environmental justice and quantifying thermal inequalities (i.e., Ahmed 2018; 
Mitchell and Chakraborty 2018).

Numerous researchers have employed land surface temperature (LST) from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate daily maximum 
air temperature (Tmax) using a statistical framework (Table 1), meaning Tmax was 
empirically estimated as a function of one or more independent variables. Empirically 
estimating relative humidity (RH) from MODIS imagery is less common (Table 1). All but Li 
and Zha (2018) incorporated some form of MODIS moisture product, such as precipitable 
water vapour (PWV) or atmospheric moisture (AM). Recondo et al. (2013) was the only 
author to derive models for both Tmax and RH, which could have theoretically been used 
to derive apparent temperature. The study performed by Ho et al. (2016) is most relevant 
to this analysis, as they estimated HUMEDIX, a Canadian measurement of apparent 
temperature, using a combination of Landsat LST, MODIS PWV, and auxiliary data related 
to urbanization level.

The goal of this analysis was to propose a novel framework for estimating HI across the 
CONUS via remotely sensed products. The objectives were twofold: (1) determine the 
extent to which HI can be estimated using a combination of static and dynamic satellite 
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products and (2) assess which factors are most important in this estimation. Specifically, 
daily maximum 1-km HI was modelled across the CONUS for 2012 using MODIS LST, PWV, 
and near-infrared (NIR) indices, as well as land cover, topographic, and locational factors.

This study represents the first attempt to estimate daily HI from remotely sensed 
products. The approach has the potential to provide a significant improvement in spatial 
resolution over traditional HI computations, which are derived from in-situ weather 
stations. As seen in Figure 1, these weather stations are not adequate to confidently 
cover the entire conterminous U.S. and capture the associated HI variability, especially in 
rural areas. While researchers have used satellite images to predict high-to-moderate 
spatial resolution Tmax and RH, with the exception of Ho et al. (2016), none have directly 
computed an index related to apparent temperature (and this only done for a single 
region). Moreover, HI, the metric used by meteorologists, policy makers, and health 
professionals in the US, has yet to be derived via remote sensing techniques.

2. Methodology

2.1. Study area

The CONUS was identified as an ideal study area due to its wide range of topographic and 
climatic conditions, in addition to the availability of auxiliary data (Figure 1). The time-
frame for this analysis was defined by the 5-month period from 1 May to 30 September of 
2012. These months capture the warmest part of the year and provide a several-week 
buffer for late/early extreme temperatures. In addition, 2012 was an unusually hot year in 

Figure 1. The CONUS study area and location of the 1,395 utilized Local Climatology Dataset (LCD) 
stations. the station grouping scheme used for the modified 10-fold cross-validation (discussed in 
Section 2.3) is displayed as well.
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which most of the CONUS was adversely affected by prolonged and excessive heat waves 
(Rippey 2015). However, there were also some cooler periods, resulting in a broad and 
normally distributed range in HI values (see Figure A1 in Appendix A for more information 
on HI variability in the utilized dataset).

2.2. Variable identification and justification

2.2.1. Response variable: Daily Heat Index (HI) from weather stations
Daily HI was available through the US Local Climatology Dataset (LCD). This dataset 
consists of hourly meteorology parameters, including air temperature and RH (US 
National Ocean and Atmospheric Administration (US NOAA) (2019)). Similar to Ho et al. 
(2016) and Zhang et al. (2014), daily HI was calculated at the time of maximum air 
temperature to reflect the apparent temperature during the hottest part of the day. The 
polynomial formula for computing HI is described by NWS (US NWS 2014). Figure 1 shows 
the location of the 1,395 CONUS stations with valid data for 2012. Valid refers to having 
hourly observations from 11:00 AM to 6:00 PM (local time) for at least 145 days (95%) from 
1 May to 31 September.

2.2.2. Predictor variables
Independent variables used for HI estimation are summarized in Table 2 and described 
below in greater detail. The MODIS sensor was the source for daily satellite observations, 
including LST, PWV, red, NIR, and mid-infrared (MIR) products. Other static variables were 
employed as well. Land cover information was obtained from the 2011 National Land 
Cover Dataset (NLCD); topographic factors were derived from the Shuttle Radar 
Topography Mission (SRTM).

2.2.3. Land surface temperature (LST) variables
LST is the most widely utilized variable for estimating Tmax and has also been used to 
estimate RH (see Table 1). Daily, 1-km daytime LST from the Aqua satellite was employed 
(MYD11A1) (Wan 2015), since Aqua’s daytime overpass is closer to solar noon than Terra’s 
(1:00 PM vs. 10:00 AM for the CONUS). While some have used atmospheric temperature 
(AT) from MODIS Atmospheric Profile products (MOD07/MYD07) to estimate RH, we used 
LST, since it was shown to be closer to radiant ground temperatures (Wang, Liang and 
Meyers 2008). LST from Terra (MOD11A1) was also used to assess potential benefits of 
alternatively using morning observations.

2.2.4. Precipitable Water Vapor(PWV)
With the exception of Li and Zha (2018), PWV or atmospheric moisture was used by all 
studies that estimated RH and Lin et al. (2012) to estimate Tmax (see Table 1). Daily, 1-km 
PWV from the Aqua satellite was available through the MODIS Total Precipitable Water 
product (MYD05) (MODIS Science Team 2014). While some have used AM from the MODIS 
Atmospheric Profile products (MOD07/MYD07), we used PWV, since it was shown to be 
closer to ground-level humidity (Wong et al. 2015). PWV from Terra (MOD05) was also 
used to assess potential benefits of alternatively using morning observations.
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2.2.5. ΔLST(s)
To account for temperature trends over the course of a given day, the difference (or Δ) 
between afternoon LST and morning (Terra day, MOD11A1), night (Aqua night, 
MYD11A1), and day before LST (Aqua day-1, MYD11A1) was included. Several authors 
have used both day and night LST images for Tmax estimation; others have included 
observations from both the Terra and Aqua satellites or fit a diurnal curve (see Table 1). 
Although some have compared different day/night and Aqua/Terra combinations, find-
ings regarding the best group of predictors are inconsistent (Zhang et al. 2011; Zeng et al. 
2015a; Phan et al. 2019). Yoo et al. (2018) noted that LST from the day before was critical 
for estimating Tmax.

2.2.6. ΔPWV(s)
Similar to LST, the difference between afternoon and morning (Terra day, MOD05) 
and day before PWV (Aqua day-1, MYD05) was used to account for humidity trends 
over the course of a day. Night-time PWV was not available, since this product is based 
on NIR bands.

2.2.7. Normalized Difference Vegetation Index (NDVI)
To account for differences in vegetative cover and evaporation rates across study areas, 
several authors have included Normalized Difference Vegetation Index (NDVI) or the 
similar Enhanced Vegetation Index (EVI) for Tmax and RH estimation (see Table 1). Daily 
NDVI was computed with the red and NIR bands (1 and 2, respectively) from the Aqua 
reflectance product (Vermote and W 2015).

Table 2. Overview of predictor variables.

Variable Definition Type
Res. 
(m) Source

LSTAD Afternoon (Aqua daytime) LST Daily 1,000 MYD11A1
LSTTD Morning (Terra daytime) LST Daily 1,000 MOD11A1
PWVAD Afternoon (Aqua daytime) precipitable water vapour (PWV) Daily 1,000 MYD05
PWVTD Morning (Terra daytime) PWV Daily 1,000 MOD05
ΔLSTM Delta Morning LST: Difference between afternoon and morning LST Daily 1,000 MYD/MOD11A1
ΔLSTN Delta Night LST: Difference between afternoon and night-time LST Daily 1,000 MOD11A1
ΔLSTDB Delta Day Before LST: Difference between afternoon LST and 

afternoon LST from the day before
Daily 1,000 MOD11A1

ΔPWVM Delta Morning PWV: Difference between afternoon and morning PWV Daily 1,000 MYD/MOD05
ΔPWVDB Delta Day Before PWV: Difference between afternoon PWV and 

afternoon PWV from the day before
Daily 1,000 MYD05

NDVI Normalized Difference Vegetation Index: (NIR – Red)/(NIR + Red) Daily 500 MYD09 GA
NDWI Normalized Difference Water Index: (NIR – MIR)/(NIR + MIR) Daily 500 MYD09 GA
%Imp Percent impervious cover (NLCD classes 21–24) Static 30 NLCD
%Ag Percent agriculture cover (NLCD classes 81–82) Static 30 NLCD
%For Percent forest cover (NLCD 41–43) Static 30 NLCD
Elev Elevation (m) Static 90 SRTM
Slope Slope (as percent) Static 90 SRTM
Lat Latitude (in decimal degrees – NAD83) Static - -
DC Distance to nearest coast (includes ocean and Great Lakes) Static - USGS (USGS 2014)

Res. = Spatial resolution of the source data, NIR = near-infrared reflectance (Band 2), Red = red reflectance (Band 1), MIR = 
mid-infrared reflectance (Band 7), NLCD = 2011 National Land Cover Database, SRTM = Shuttle Radar Topography 
Mission.
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2.2.8. Normalized Difference Water Index (NDWI)
Authors also used Normalized Difference Water Index (NDWI) for estimating Tmax and RH, 
as it tends to be more related to plant water content than NDVI (see Table 1). We 
computed daily NDWI with the NIR and MIR bands (2 and 7, respectively) from the 
Aqua reflectance product (MYD09 GA).

2.2.9. Percentland cover (impervious, forest, agriculture)
As air temperature and humidity are highly dependent on land cover, authors have 
included percent land cover variables in their models or proximity to certain urban 
features, such as roads or city centres (see Table 1). Some fit separate models for each 
land cover type (Zhang et al. 2011; Rhee and Im 2014; Zeng et al. 2015a). To account for 
varying land cover, percent impervious (%Imp), forest (%For), and agriculture (%Ag) were 
computed with the 2011 NLCD (USGS 2017). These cover types are the most commonly 
considered for Tmax and RH estimation (Zhang et al. 2011; Rhee and Im 2014; Zeng et al. 
2015a).

2.2.10. Additional topographic and locational factors
As Tmax and RH vary with respect to elevation, many authors utilized elevation from 
a digital elevation model (DEM) for estimation (see Table 1). Some additionally considered 
slope (Rosenfeld et al. 2017; Serra et al. 2020). To reflect the effects of topography, we 
incorporated elevation and slope from the Shuttle Radar Topography Mission (SRTM) 
(Kautz 2017). Latitude (Lat) was used to adjust for warmer temperatures closer to the 
equator and distance to nearest coast (DC) was included to account for greater humidity 
closer to large bodies of water. We used USGS’s definition for the CONUS coast (USGS 
2014), which includes the shorelines of the Great Lakes and oceans. To assign a higher 
weight to closer stations, natural log of distance was taken.

2.3. Variable geoprocessing and grid alignment

The MODIS 1-km LST grid defined the spatial reference for the HI model. All other 
variables were resampled to match. After the independent variables were aligned, values 
for pixels that contained a LCD station were extracted. To account for registration issues, 
an inverse distance weighted spatial average of valid values was taken using a 3 by 3 
window around each station. Invalid values within the window were ignored. However, if 
the centre pixel was invalid, the average was set to invalid. This was done for LST, PWV, all 
Δ parameters, Lat, Elev, and Slope. To reflect a larger area of environmental conditions and 
the landscape around each station, NDVI, NDWI, and land cover variables were calculated 
with a 5 by 5 unweighted average of valid values. The unweighted average assigned equal 
weights to all values within a   25-km2 area around each station. This approach was based 
on authors who employed the TVX method with a sliding window size of 5–7 pixels (Zhu, 
Lű and Jia 2013; Kitsara et al. 2018; Misslin et al. 2018). As with the 3 by 3 window, an 
average was taken only if the centre pixel was valid; invalid pixels were not used to 
compute the average.
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Observations were then pooled across stations and days (1,395 stations X 153 days =  
213,435 observations). Each station had 153 different values for daily variables, which in 
some cases were invalid due to cloud cover or emissivity error. For static variables (e.g. 
elevation), stations were assigned the same value for each day.

2.4. HI model development, validation, and selection

Due to the large number of observations and nonlinearity of the HI equation, random 
forest regression was identified as an appropriate method for model development. 
Random forest regression is a nonparametric machine learning technique that uses 
a set of regression trees, each trained with a subset of training data, with a random subset 
of available predictors used to split the data into each node of each tree (Ho et al. 2016; 
Yoo et al. 2018). Refer to Breiman (2001) for further details.

Due to its flexibility in areas with complicated and heterogeneous landscapes (Noi, 
Degener and Kappas 2017; Yoo et al. 2018), random forest regression has been extensively 
used to estimate air temperature (Xu, Knudby and Ho 2014; Meyer et al. 2016; Zhang et al. 
2016; Noi, Degener and Kappas 2017; Sanikhani et al. 2018; Yoo et al. 2018; Zhu et al. 2019; 
Otgonbayar and Avirmed 2019; Hough et al. 2020; Shen et al. 2020), humidity (Li and Zha 
2018), and HUMIDEX (Ho et al. 2016) from MODIS products. Several authors have found 
random forest to serve as a better predictor of air temperature than ordinary least squares 
regression (Xu, Knudby and Ho 2014; Meyer et al. 2016; Noi, Degener and Kappas 2017) and 
other machine learning techniques (Zhang et al. 2016; Zhu et al. 2019; Shen et al. 2020).

To evaluate relative improvements in HI estimation from adding additional parameters, 
a series of simple to complex models were developed. Starting with LST, variables were 
included in order of highest expected importance to least, based on previous findings for 
Tmax, RH, and HUMIDEX models (see Table 1). NIR indices (NDVI and NDWI) were added 
last, since these variables were the most data-intensive to derive and may already be 
captured by land cover. To ensure an unbiased comparison, the same observations were 
used to train and validate each model. These represent instances in which all MODIS 
parameters were valid (n = 52,464).

To avoid using observations from the same station for both training and validation, 
a modified 10-fold cross-validation approach was employed, such that stations were 
randomly assigned to 10 groups (see Figure 1). When a group was used for validation, 
the other nine groups were used for training. The optimal parameters for random forest 
regression were identified by iteratively testing values and finding the combination that 
produced the lowest mean square error (MSE). These parameters included the learn rate, 
maximum number of splits, and minimum number of leaves. Further information on the 
selected optimal random forest parameters is available in Table A1 of Appendix A.

Model performance was assessed on the basis of the resulting coefficient of determi-
nation (R2) and root mean square error (RMSE). Multicollinearity was evaluated with 
variable inflation factors (VIFs). The best model was selected on having an ideal trade- 
off between performance and loss of observations. ‘Best’, in this context, refers to the 
most ideal model across a restrictive set of predictor variables (described in Table 2) and 
does not imply that all possible parameters or combination of parameters were tested. 
Once the best model was selected, variable importance was further evaluated using 
the percent increase in mean square error (%IncMSE), similar to Xu, Knudby and Ho 
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(2014), Ho et al. (2016), Didari and Zand-Parsa (2018), Li and Zha (2018), and Yoo et al. 
(2018). This metric quantifies the relative increase in model error when each variable is 
removed.

3. Results and discussion

3.1. Model selection: performance assessment and tradeoffs

To assess the utility of LST for estimating HI and improvements derived from incorporat-
ing additional variables, 14 models were fit via random forest regression. The results are 
summarized in Table 3. For consistency, models were trained and validated on the exact 
same observations, which had valid values for all MODIS-derived variables (n = 52,464). 
This is different than the number of potential observations (np) reported in Table 3, which 
had no bearing on model development/assessment. The number of potential observa-
tions varies by model due to the incorporation of different variables; models with more 
variables tend to have a lower np, since there is a greater chance for clouds to invalidate at 
least one of the variables.

Adding PWV resulted in the most significant improvement in model performance 
(Model 2). Including all of the other parameters only increased the R2 by 0.14 and 
decreased the RMSE by 1.6°F (Model 14). While HI estimation can be enhanced by 
incorporating these factors, using just afternoon LST and PWV for a simplified model 
may be sufficient, depending on the accuracy required for a given application. Missing 
afternoon observations from the Aqua sensor could also be substituted with morning 
observations from the Terra sensor to reduce the frequency of invalid data (as indicated 
by the similar performance of Models 2 and 3).

An important finding from this analysis is that LST alone is a poor predictor of apparent 
temperature. However, researchers commonly utilize MODIS LST to examine air tempera-
ture in the context of human health (Stathopoulou et al. 2005; Klein Rosenthal, Kinney and 
Metzger 2014; Bao, Li and Yu 2015; Ho, Knudby and Huang 2015; Morabito et al. 2015; 
Declet-Barreto et al. 2016; Lehoczky et al. 2017; Xu et al. 2017; Chen et al. 2018; Karimi et al. 
2018; Méndez-Lázaro et al. 2018; Mushore et al. 2018; Song and Wu 2018; Sun et al. 2018; 
Valmassoi et al. 2018). Future work in this field could be significantly improved by 
incorporating our proposed models.

A major disadvantage of using multiple Δ parameters is the loss of usable observations, 
especially since Model 7 performed only slightly better than the Δmorning (Model 4), 
Δnight model (Model 5), and Δday-before (Model 6) models. Thus, we recommend that 
researchers use either Δmorning LST/PWV or Δnight LST variables. Adding land cover, 
topography, locational, and NIR factors resulted in only a marginal improvement in HI 
estimation. Considering the extensive data processing required to incorporate daily NDWI 
and NDVI, these variables can potentially be omitted.

It is important to note that if the primary goal is HI estimation, multicollinearity would 
not necessarily be an issue. In fact, several researchers developed Tmax models that 
utilized multiple LST products with a high degree of correlation (Noi, Kappas and 
Degener 2016; Didari and Zand-Parsa 2018; Yoo et al. 2018; Zhang et al. 2018; Phan 
et al. 2019). However, Model 13 was selected as the best model for subsequent error and 
variable importance assessment, since it had a maximum VIF smaller than 5 and provided 
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a good trade-off between performance and loss of observations. In this context, ‘best’ 
refers to the most ideal across all 14 models that were tested. The results discussed in the 
following sections (3.2 and 3.3) were derived from retraining and validating this model 
with all 94,891 observations available for regression. Refer to Section A3 in Appendix A for 
a detailed discussion and comparison of the different models.

3.2. Error assessment for the selected model

When the selected model (Model 13) was retrained and validated using all available 
94,891 observations via the modified 10-fold cross validation approach, the resulting R2 

and RMSE were 0.83 and 4.4°F, respectively; the maximum VIF was 3.1. Note that these 
values differ from those specified in Table 3, since all potential observations were used 
(94,891 vs 52,464). Figure 2 shows a point density plot of estimated versus actual HI 
values; there is a strong degree of linear association between the two. For extreme HI 
(<50°F and >110°F), there were some instances of over and under estimation, most likely 
due to the limited number of observations available for model development in this range. 
However, the vast majority of observations follow the one-to-one relationship.

Based on the R2, Model 13 compared favourably to previous Tmax models and out-
performed most RH models (see Table 1). The RMSE was lower than the RMSE for Ho et al. 
(2016) HUMIDEX model (9°F). While some caution is advised when interpreting direct 
comparisons, as these analyses utilized different dependent variables and study areas, this 
indicates that our HI model performs reasonably well, especially when considering that it 
was validated across a wide range of conditions over the entire CONUS.

Model residuals were normally distributed, demonstrating that there was no bias 
towards over or under estimation (Figure 3). Note that residuals were derived with 
estimates from the modified 10-fold cross validation approach. The maximum and 

Figure 2. Point density plot of estimated vs. actual HI for the selected model (Model 13). Note: this plot 
reflects the 94,891 observations that were used to train and validate the model; plot made using 
function from Henson (2022).
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minimum residuals were 40.7°F and −24.3°F, respectively. However, the vast majority 
(77.6%) were within ±5°F; <0.1% were outside of ±20°F. These unusually high residuals did 
not appear to be concentrated among a small group of stations, as no station had more 
than 2. In fact, only 8 stations had more than 1. In addition, they did not appear to be 
caused by abnormal HI or predictor values. While the model performed very poorly for 
these observations, they represented a negligible portion of the data (n = 45) and are not 
a cause of major concern.

The residual plot indicated that model error was homogenous (Figure 4). There did not 
appear to be greater error for higher or lower HI.

RMSEs were computed for each station (across all observations for a given station). 
Most station RMSEs were <5°F (73.5%). There were no major spatial trends in station error 
across the CONUS (i.e. increasing error north to south, east to west, or closer to the coast) 
(Figure 5). However, several stations with a RMSE >10°F were concentrated in Southern 
Coastal California. This may be due to the region’s later peak in maximum annual 
temperatures, which occurs in mid-September (US National Ocean and Atmospheric 
Administration (US NOAA) 2019). Hashimoto et al. (2008) produced a vapour pressure 
deficit model from MODIS data and similarly found that this area of the CONUS to have 
a high prediction error.

When comparing the RMSE map of the selected model (Figure 5) to the RMSE map of 
the LST only model (Figure 6), it is evident that including additional factors considerably 
improved HI estimation across the CONUS. The improved performance was most appar-
ent for stations along the eastern coast of the US (south of Pennsylvania) and Gulf of 
Mexico. This was expected though, as these areas are hotter and more humid than the 
rest of the CONUS. Interestingly, the LST only model performed better in the western 
portion of states bisected by the 100° Meridian, especially Texas, likely due to the dryer 

Figure 3. Histogram of residuals for the selected model (Model 13) with all 94,891 potential 
observations.
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climate. While this analysis did not consider Longitude, subsequent models may benefit 
by incorporating it to account for dyer conditions west for the 100° Meridian. Moreover, it 
appears that including additional variables to account for atmospheric moisture, land 
cover, and topography is most important for hot and humid regions of the CONUS.

Figure 4. Residual plot (left) and corresponding box plot (right) for the selected model (Model 13). 
Note: x-axis for the boxplot lists the midpoint for each estimated HI range.

Figure 5. RMSE by station (in °F) for the selected model (Model 13).
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Much of the justification for this paper applies to metropolitan areas, since urban areas 
encompass >80% of the US population, exacerbate heat waves, and have sharp changes 
in temperature over relatively short distances due to the urban heat island effect (making 
spatially explicit temperature datasets especially important). However, the model could 
be applied to rural locations as well. HI estimates would be of great use to rural commu-
nities, since weather stations in these areas are highly sparse. Furthermore, the model 
could be used to better examine the impact of heat stress on ecosystems. Understanding 
and predicting biological responses to extreme heating events is critical for effective 
ecosystem modelling (Jentsch, Kreyling and Beierkuhnlein 2007; Smale and Wernberg 
2013). These HI estimates offer complementary insight to climatic pressures exhibited on 
terrestrial ecosystems, thus leading to improved modelling opportunities.

Another point to make with respect to the random forest modelling capabilities is that 
when Model 13 was replaced with an ordinary least squares regression, results were close 
to those derived from random forest (R2 = 0.79 vs. 0.83, RMSE = 4.9°F vs. 4.4°F). This is 
consistent with Meyer et al. (2016), who found only a slight improvement of random 
forest over ordinary least squares regression when modelling air temperature. Thus, the 
use of least squares may be sufficient for HI prediction.

3.3. Variable importance assessment for the selected model

The percent increase in mean square error (%IncMSE) was used to further assess the 
importance of variables included in the selected model (Model 13) (Table 4, first column). 
LST and PWV were, by far, the most important variables for HI estimation. This corre-
sponds to previous authors who determined that these factors had the highest variable 

Figure 6. RMSE by station (in °F) for the LST only model (Model 1).
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importance in their respective Tmax (Lin et al. 2012; Xu, Knudby and Ho 2014; Recondo 
et al. 2013; Noi, Kappas and Degener 2016; Yoo et al. 2018; Hough et al. 2020), RH (Lin et al. 
2013; Recondo et al. 2013), and HUMIDEX (Ho et al. 2016) model. The %IncMSE for LST was 
about 2/3rds larger than the %IncMSE for PWV. However, the inclusion of both LST and 
PWV is essential, as model error roughly doubled when either was removed (2.3X greater 
for LST, 1.8X greater for PWV).

NDWI had the next highest importance score, with a %IncMSE just above ΔLST and 
ΔPWV. Authors have similarly found NIR indices to be the second most important factor 
behind LST and/or PWV (Kim and Han 2013; Lin et al. 2012; Xu, Knudby and Ho 2014; 
Recondo et al. 2013; Li and Zha 2018; Yoo et al. 2018); others have found them to have 
little to no influence on estimation (Lin et al. 2013; Ho et al. 2016; Noi, Kappas and 
Degener 2016; Didari and Zand-Parsa 2018). Shen et al. (2020) state that LST and NDVI 
explain the vast majority of variability in Tmax. Considering the number of Tmax models 
that included multiple LST predictors (see Table 1), it was surprising to find that ΔLST and 
ΔPWV did not have a higher %IncMSE.

With the exception of elevation (Elev) and percent impervious (%Imp), removing land 
cover, topographic, and locational factors resulted in virtually no increase in model error. 
In prior work, these variables were commonly found to have moderate to low importance 
scores (Lin et al. 2012; Kim and Han 2013; Recondo et al. 2013; Xu, Knudby and Ho 2014; 
Ho et al. 2016; Noi, Kappas and Degener 2016; Li and Zha 2018; Yoo et al. 2018). Percent 
impervious (%Imp) was the most important land cover variable, perhaps due to differ-
ences in temperature and humidity across urbanization levels (Yang, Ren and Hou 2017; 
Lokoshchenko 2017; Hao et al. 2018). However, the importance score for all land cover 
variables was relatively low. In contrast to authors that used a smaller study area (Xu, 
Knudby and Ho 2014; Ho et al. 2016; Rosenfeld et al. 2017; Li and Zha 2018), distance to 
nearest coast (DC) did not appear to have any influence on estimation at a continental 
scale.

Table 4. The percent increase in mean square 
error (%incmse) of each variable, R2, and RMSE 
for the selected HI model and comparison to 
similar Tmax and RH models.

HI Tmax RH

R2 0.83 0.83 0.74
RMSE 4.4 (°F) 4.3 (°F) 7.4%)
%IncMSE

LST 126.3 172.9 73.1
ΔLST 11.7 12.9 6.2
PWV 76.0 32.8 44.8
ΔPWV 11.1 9.1 2.1
%Imp 2.0 3.1 4.1
%For 0.9 1.7 1.1
%Ag 0.0 0.0 1.0
Elev 8.6 8.9 25.7
Slope 0.7 1.1 0.0
DC 0.0 0.0 0.0
Lat 0.2 0.5 0.0
NDWI 13.3 13.4 7.3
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In general, quantifying %IncMSE for predictors produced results that were consistent 
with Section 3.1. The most important factors were LST and PWV, Δ parameters and NDWI 
were moderately important, and land cover, topographic, and locational factors had little 
to no impact on HI estimation.

To further compare our results to previous studies, maximum air temperature 
(Tmax) and relative humidity (RH) models were fit with the same parameters via 
random forest regression (Table 4, last two columns). Consistent with Recondo et al. 
(2013), the RH model performed worse than the Tmax model. As expected, LST was 
the most important variable in the Tmax model. However, PWV had the second 
highest factor, suggesting that the incorporation of PWV is also important for Tmax 
estimation. This is a significant finding, as only Lin et al. (2012) included PWV in their 
Tmax model. A major distinction between HI and Tmax is that PWV had a much 
larger importance factor for HI. When PWV was removed from the Tmax model, the 
estimation error increased by only 33%. When PWV was removed from the HI model, 
however, the error nearly doubled. In fact, PWV was just as important for HI estima-
tion as it was for RH. Thus, failing to include PWV will result in model estimates that 
poorly reflect apparent temperature.

3.4. Limitations

It is important to note several limitations and constraints for the proposed models. As 
mentioned by Lin et al. (2012), weather stations are not randomly distributed and tend to 
spatially correlate with population. There was, however, a sufficient spread of both urban 
and rural stations across the CONUS (see Figure 1). Most had 10–35% impervious cover 
and there was decent representation for all levels from 0% to 100% (see Figure A2 in 
Appendix A). The large number of utilized stations (n = 1,395) encompassed a wide range 
of conditions for model development.

In its current state, our model can only produce HI estimates with cloud-free 
observations, which represented 46% of values in the utilized dataset. There are 
several daily LST interpolation methods that can be used to derive a temporally and 
spatially continuous dataset (Neteler 2010; Maffei, Alfieri and Menenti 2012; Alfieri, 
De Lorenzi and Menenti 2013; Metz, Rocchini and Neteler 2014; Fan et al. 2014; Yu 
et al. 2015; Zeng et al. 2015b; Shwetha and Kumar 2016; Kang et al. 2018); some 
were specifically designed for CONUS urban areas (Li et al. 2018; Long et al. 2020). 
Liao et al. (2020) estimated RH for cloud-contaminated pixels using MODIS atmo-
spheric profile datasets. To our knowledge, no such method exists for NDWI. An 
interpolation approach for LST, PWV, and NDWI that is applicable to the entire 
CONUS could be used to produce a gap-free HI product.

Our HI model is also limited by its 1-km spatial resolution. While this scale is sufficient 
to examine sub-regional heating trends, aligning HI estimates with socioeconomic data at 
the Census block-group level may be challenging. A growing body of work has focused on 
downscaling MODIS LST to a 60-m resolution using Landsat imagery (Bindhu, Narasimhan 
and Sudheer 2013; Yoo et al. 2020). As Ren et al. (2015) demonstrated how PWV could be 
derived from Landsat 8, it may be possible to downscale MODIS PWV and NDWI as well. 
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While applying interpolation and downscaling methods to the entire CONUS would be 
data-intensive, a gap-free, daily 60-m HI product could be highly beneficial to future 
researchers.

4. Conclusions

This analysis aimed to estimate daily maximum 1-km HI across the CONUS using MODIS 
products in conjunction with ancillary spatial datasets and determine which factors were 
most important for estimation. We produced a model that was capable of estimating HI 
with a satisfactory level of error (R2 = 0.83, RMSE = 4.4°F). Stations with a relatively high 
level of error were concentrated in Southern Coastal California, perhaps due to the late 
peak in maximum summer temperatures. However, the vast majority of observations were 
estimated within 5°F. LST and PWV were, by far, the most important variables for HI 
estimation. The incorporation of additional NIR indices, land cover, topographic, and 
locational factors resulted in further improvements in model performance (R2: +0.14, 
RMSE: −1.6°F). Applying a simplified model that includes just LST and PWV may be 
sufficient, depending on the required accuracy. Prior to this analysis, research regarding 
satellite-based apparent temperature indices had been limited. In comparison to previous 
Tmax and RH models, our derived HI product is unique in that it was produced at 
a continental scale and is applicable across a wide range of conditions. An important 
finding from this study is that the use of LST alone is a poor predictor of apparent 
temperature. However, LST is widely utilized to examine urban heat island effects in the 
context of human health. Future work on this topic could be greatly improved by the 
incorporation of PWV.

Although the scope of this paper was to propose a novel method for estimating HI, our 
overarching goal is to create a seamless grid product for the entire CONUS in future work. 
All employed datasets are widely and freely available, thus making product creation 
feasible. We hope that researchers in multiple study areas, for example in epidemiology, 
building energy demand, and environmental justice, can use this analytical framework to 
assess sub-regional heating patterns at a much greater spatial resolution than previously 
possible. Further work to interpolate cloud-contaminated values and downscale esti-
mates to a 60-m resolution would considerably increase the utility of this HI product. 
A follow-up study could build off these findings to create a seamless, daily 60-m HI dataset 
across the entire CONUS from 2001 to 2021.
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