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A B S T R A C T   

The Landsat archive, with a multi-decadal global coverage is a prime candidate for deep learning classification 
methods due to the large data volume. Local studies have evaluated deep learning methods on Landsat obser
vations. However, these models often saturate at high accuracies due to limited reference dataset size thus do not 
fully explore the potential of deep classifiers. Furthermore, no provisions are taken to investigate algorithmic 
performance of challenging classification areas. To address these shortcomings in this research, Landsat 5, 7 and 
8 observations were combined within the continental United States to create one of the largest to date reference 
dataset containing about 21 million labeled annual temporal sequences. Difficult to classify reference samples 
were isolated by examining labelsin the immediate vicinity. Long Short-Term Memory (LSTM) and Convolutional 
Neural Networks (CNN) deep learners were integrated to capture temporal and spatial relationships, respec
tively. Classification mapping accuracy was contrasted with a commonly implemented large-scale mapping 
method, the Random Forest (RF). 

Results indicate substantial classification improvements of deep learning methods (DLMs) over the RF. These 
improvements are more pronounced on challenging to classify pixels in heterogenous areas. RF classification 
accuracy reaches about 70% on average, while DLMs are at 86%-95% range, depending on model architecture. 
Grass and bare land classes show the highest accuracy improvements, from 65.5% and 63.5%, respectively for 
the RF to the 79.4%-96.3% range for the DLMs. Our work also examined the practical value of having two, 
instead of one, Landsat sensors. Results indicate substantial classification increases (7%-10% in average F1 ac
curacy) suggesting that having two concurrent Landsat sensors is important not only for redundancy but also for 
improved mapping capabilities.   

1. Introduction 

Land Cover / Land Use (LCLU) mapping is the process of compiling 
geographical data and creating thematic maps to delineate different 
land regions and assign desired labels to them based on features that 
make up the ground and their intended use. LCLU mapping has direct 
applications in disaster response, natural resource management, and 
human-nature interactions (Giri 2016, chap. 1). LCLU maps are also 
essential for biodiversity studies (Pimm et al. 2014), they guide forest 
management (Erb et al. 2018) and uncover energy use patterns 
(Güneralp et al. 2017). In addition to these direct applications, the effect 
of land cover and land use change (LCLUC) on climate by altering heat 
fluxes, surface radiation balance, and greenhouse gas fluxes is an active 

field of study, as promoted by higher concerns on climate change 
(Pongratz et al. 2021). Clearly, availability of highly accurate, multi- 
scale historical and current LCLU maps is an essential need for socially 
important environmental studies. Multiple large scale LCLU mappings 
efforts have relied on satellite observations. A review by Grekousis et. al 
(2015) discusses 21 global and 43 regional land cover mapping products 
covering spatial resolutions from 30 m to 1 km using Landsat, MODIS, 
MERIS, and other satellite platforms. Pérez-Hoyos et al. (2017) also 
review seven global land cover maps for cropland classification. More 
recently, Liu et al. (2021) inspected and compared three popular global 
land cover products and other thematic global maps. 

Deep learning methods have been used for more than a decade in 
many domains such as computer vision, speech recognition, and natural 
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language processing (Deng, 2014; Ahmad et al, 2019). Deep learning 
methods have also found their way in several remote sensing tasks, 
including image pre-processing, scene classification, pixel-based classi
fication, image segmentation, and target detection (Zhang et al., 2016; 
Ma et al., 2019; Zhu et al., 2019). Scene classification typically assigns a 
single label to an image patch. Some demonstrations of scene mapping 
exist, for example X. Zhang et al. (2021), Rousset et al. (2021), Helber 
et al. (2019). Another popular implementation of deep learning methods 
involves transfer learning, the process by which a pre-trained network is 
fine-tuned with application- and site-specific training data. Transfer 
learning methods have been mostly applied on scene-based classifica
tions, because the large pre-trained networks originate from computer 
vision tasks aimed for scene classification or object detection. Example 
works include Pires de Lima and Marfurt (2019), González-Vélez et al 
(2022) and B. Zhao et al. (2017). 

As the focus of this study is on deep learning methods in pixel clas
sification based on medium-resolution (Landsat) data, we will not 
elaborate more on scene classification and concentrate on pixel classi
fication throughout the rest of this section. Pixel-based land cover / land 
use mapping provides a separate label for each image pixel. In addition 
to the individual pixel’s spectral data, other data dimensions or tech
niques are widely used to enhance the classification. Specific deep 
learning methods exist targeting the incorporation of spatial informa
tion (e.g., using convolutional neural networks), temporal information 
(e.g., using recurrent neural networks), or spatial and temporal 
integration. 

Adding spatial information is done in a variety of forms, such as 
flattening spatial information (converting a 2-D spatial neighborhood 
around a pixel to a 1-D array) and feeding a recurrent network with a 
sequence of flattened spatial-spectral data (Sharma et al., 2018). 
Example CNN works include studies in China (X. Zhao et al., 2019), 
United States (J. Wang et al., 2017), Canada (Alhassan et al., 2020), Iran 
(Garajeh et al., 2022) along with global efforts (Corbane et al., 2021, 
Karra et al., 2021). Direct comparisons with non-deep classifiers such as 
Random Forests (RF) have explicitly quantified accuracy improvements. 
Y. Wang et al. (2021) used a CNN network enriched with additional 
processing modules to classify crop types in several US states using 
Sentinel-2 data and achieved 97.8% accuracy, while RF accuracy was 
95%. Saadeldin et al. (2022) used a deep convolutional network to grade 
grazing land use intensity in Ireland within three classes using Sentinel-1 
and Sentinel-2 data, and achieved an accuracy of 92.8%, compared to 
84.8% accuracy from RF. Jamali and Mahdianpari (2022) used a com
plex multi-model deep network to map wetland sites in Canada based on 
Sentinel-1 and Sentinel-2 data and reported accuracy of 92.3% while an 
RF classifier reached 91.5%. The above examples are just a few of the 
very active line of research using various forms of convolutional net
works to conduct pixel classification. 

Recurrent neural networks (RNNs) are typically used for processing 
time-series and lengthy temporal data. RNNs have entered remote 
sensing literature recently (see Lyu et al., 2016) for change analysis, and 
then found applications in land cover classification with promising re
sults. They are of special interest when the temporal transitions are 
essential in class identification (e.g., crop classification). For example, 
RNN-based crop type classification by Rußwurm and Körner (2017) on 
Sentinel-2 data achieved overall accuracy of 84.4%, and land cover 
classification by Sun et al. (2019) on Landsat data reached overall ac
curacy of 89%. Lin et al. (2022) also used a design based on Long Short- 
Term Memory (LSTM) modules on Sentinel-1 data and reported accu
racy of 98.3% in rice paddies mapping in the U.S. In another research, B. 
Chen et al. (2022) used a bidirectional LSTM design on Sentinel-2 data to 
classify crop type in a region in China and achieved overall accuracy of 
about 97%. An example of comparison with a RF classifier is offered by 
Campos-Taberner et al. (2020), where a bidirectional LSTM imple
mentation on Sentinel-2 data obtained overall accuracy of 98.7% for 
crop type classification, while the best non-deep classifier was a RF with 
accuracy of 94.9%. 

Of particular interest is the integration of spatial and temporal in
formation within the classification process. Combining CNN and RNN 
methods can be executed in many ways. One popular approach is to 
place a convolutional neural network before the RNN step. This idea has 
been applied to crop type classification in Pelletier et al. (2019) using a 
stack of Formosat-2 images. The CNN implementation can be integrated 
within the LSTM cells, as Rußwurm and Körner (2018) used to process 
Sentinel-2 data for 17-class crop type classification with overall accu
racy of 90%. The CNN part can also be placed after the recurrent part as 
demonstrated by Mazzia et al. (2019) who reported overall accuracy of 
96.5% using Sentinel-2 data for crop type classification. Finally, the 
CNN part can be placed in parallel to the recurrent network as used by 
Interdonato et al. (2018), where they passed input image stacks through 
parallel RNN and CNN branches and aggregated the branches output in 
one data vector and classified the result. Using Sentinel-2 data, they 
reported overall accuracies of 86.1% and 96.8% for two land cover 
classification case studies. Parallel CNN and RNN architectures have also 
been applied in multi-sensor fusion tasks. For example, Landsat, high- 
resolution imagery via the National Agriculture Imagery Program 
(NAIP) dataset, climate data via the PRISM dataset, and terrain topog
raphy data were fused by Chang et al. (2019). Thorp and Drajat (2021) 
also used different LSTM and CNN combinations to map paddy rice 
fields in Indonesia using Sentinel-1 and Sentinel-2 data but achieved 
similar test accuracy of about 76% in their different settings. Masolele 
et al. (2021) used various models of spatial, temporal, or spatio- 
temporal deep models (CNN and LSTM-based designs) over Landsat 5/ 
7 data to assess land use after deforestation for selected areas in different 
continents and confirmed higher accuracy of hybrid spatio-temporal 
models. 

Another problem that specially hinders development of deep models 
is the availability of large reference datasets. Three notable large data
sets are available for satellite-based land classification, namely 
BigEarthNet, LUCAS, and LCMAP. BigEarthNet contains approximately 
590 K land patches of 1.2kmx1.2 km, each patch labelled with multiple 
land covers (Sumbul et al., 2021). Due to the variably patch size it is not 
usable for pixel-based classification. Two large, pixel-based, reference 
datasets are available for medium resolution imagery. The Land Use/ 
Cover Area frame Survey (LUCAS) dataset contains a point survey for 
more than 1.1 million point (Andrimond et al., 2020) that combines 
photointerpretation with ground surveys. The Land Change Monitoring, 
Assessment, and Projection (LCMAP) reference dataset was recently 
released by the U.S. Geological Survey. The dataset contains 25,000 
points with land cover/use labels assigned annually during the period of 
1984–2018 for a 30 m x30m area (Pengra et al., 2020). 

The potential of deep learning methodologies to advance LCLU 
mapping has been extensively demonstrated. Our study seeks to quan
tify further these accuracy improvements through an assessment over a 
newly developed reference dataset across the continental U.S. Our work 
offers two key distinctions: i) our reference dataset is substantially larger 
that previous efforts, thus allowing data-hungry deep learning methods 
to reach their full potential, and ii) we offer an explicit assessment on 
difficult to classify pixels – defined as pixels where LCLU class spatial 
transitions occur – thus amplifying algorithmic performance differences 
in the most challenging to classify pixels. 

2. Data 

2.1. Study area 

Our study area was the entire conterminous United States. We 
received 2717 land cover samples for 10 km × 10 km blocks for each 
ecoregion from USGS, which was originally produced for the USGS Land 
Cover Trends Project (https://www.usgs.gov/centers/wgsc/scienc 
e/land-cover-trends). The blocks composed of 333 × 333 pixels (at 30 
m nominal ground resolution) using the Albers Conical Equal Area 
projection and were validated for the year 2000 (note we manually 
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verified them for 2005–2019 – see section 3.1). Each pixel was labeled 
according to a modified Anderson classification system to designate the 
pixel’s dominant land cover/use. Eleven classes were assigned: Water, 
Developed/Urban, Mechanically Disturbed (human-induced distur
bances), Barren, Mining, Forests/Woodlands, Grassland/Shrubland, 
Agriculture, Wetland, Nonmechanically Disturbed (disturbances caused 
by natural causes such as caused by wind, floods, fire, animals), and Ice/ 
Snow. 

One representative block for each of the 84 level III EPA ecoregions 
was selected for further investigation and refinement (Fig. 1). These 
ecoregions guided sample stratification as defined in https://www.epa. 
gov/eco-research/ecoregions, ecoregions are areas where ecosystems 
and the type, quality, and quantity of environmental resources are 
generally similar. The selection criteria for a representative block from 
each ecoregion included high class diversity and balanced distribution 
of land cover types. 

2.2. Data types 

Landsat Surface Reflectance and topographic data were the data 
sources. All datasets were freely available on the Google Earth Engine 
platform, which was used for data access and dataset generation. 
Landsat surface reflectance Tier 1 data was used in this study, which has 
already been corrected for atmospheric errors. Landsat radsat_qa and 
pixel_qa quality bits were also used for each pixel to identify radiometric 
saturation and cloud or cloud shadow conditions (medium or high 
confidence) and remove those pixels. The Landsat 7 errors due to SLC 
failure have already been processed by the Google Earth Engine and 
those pixels were masked. Landsat 5, 7, and 8 sensors were integrated 
and six Landsat bands were included: Blue, Green, Red, NIR, SWIR1, and 
SWIR2 bands. The Shuttle Radar Topography Mission (SRTM) digital 
elevation data V3 product as provided in Google Earth Engine catalog 
was used to extract elevation, slope, and aspect fields. These three 
variables were considered static over the entire study period. 

3. Methods 

The methods section presents details for dataset generation (both 
reference and model input data), simulation framework, and model ar
chitecture. We also discuss benchmark algorithms, and performance 
evaluation criteria. 

3.1. Dataset generation 

A subset of all available pixels within the 84 EPA blocks was 
extracted. Within each block, possible changes within each pixel’s land 
cover were visually inspected using Google Earth high-resolution im
agery and pixels with stable land cover over a long time period were 
selected. This period was generally considered to be 2005–2019 
(including both start and end year) but may vary based on availability of 
high-resolution imagery for each location. Some pixels were dropped 
due to uncertainty and/or instability of land cover type, so our reference 
maps were patchy and not contiguous. To increase confidence on the 
produced dataset all pixels were visually inspected. 

3.1.1. Assigning class labels 
Possible land cover types were reduced from 11 in the original USGS 

dataset to 7. This included water, developed, grass/shrub, forest, bare, 
agriculture, and wetland classes. No ice/snow class was present in our 
selected points. Class definitions are provided in Appendix A, along with 
further discussion on low quality or missing data, mixed pixels and 
transitions (for example between forest and grassland), dynamic 
boundaries (such as in wetlands), and class priorities. Briefly, the la
beling process followed a progressive rule-based approach. Highest 
priority was given to developed areas. If at least 20% of a pixel’s area 
was considered developed, then that pixel was assigned to the developed 
class independently of the rest of its content. The next priority was given 
to the agricultural fields with a similar 20% minimum pixel area 
coverage. If a pixel was not assigned with the above two rules, then a 
land cover type was selected using a simple majority rule. Further rules 
were developed to distinguish farm from grassland, grass or forest from 

Fig. 1. Level III ecoregions in the conterminous United States (source: https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states) and 
selected blocks (red circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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wetland, wetland from water, bare from grassland, etc. A summary of 
required steps for data processing and overall workflow is given in Ap
pendix B. 

3.1.2. Pixel selection and annual sequence generation 
Upon completion of class labeling, qualified pixels for each of the 84 

blocks varied between 35,000 up to 100,000 valid pixels. Also, time 
spans ranged from 8 to 15 years. To keep simulation times practical, 
about 7,000 to 50,000 pixels in each block were initially selected to 
reach a total of about 1.6 M (million) pixels. Details on block class dis
tribution are provided in Appendix C. Class distribution varied consid
erably with wetland and bare land classes underrepresented. Early tests 
showed that wetland and developed classes were more challenging to 
classify accurately, and wetland and bare classes were low in frequency. 
Therefore, to create the final dataset all bare and wetland pixels were 
included. Also, a larger proportion of developed class pixels (compared 
to the other classes) was selected. After generating annual sequences for 
each available year for each pixel, the final dataset contained approxi
mately 21 M annual sequences with the class distribution presented in 
Table 1. 

Each sample of the 21 M annual sequences corresponded to a specific 
pixel location and represented available data for a particular year. The 
length of each Landsat sequence varied from pixel to pixel (e.g., due to 
clouds) and block to block; the highest number was 98 observations per 
year (mean of 50) and corresponded to pixels covered by multiple 
adjacent Landsat scenes. These different sequence lengths required a 
zero-padding process, where extra feature records with zero values were 
added to the sequence to make all annual sequences having an equal 
number. The features to include in each sequence varies based on the 
selected model type, as described in section 3.3. 

3.1.3. Calibration and validation data generation 
The dataset was divided into calibration (for model optimization) 

and validation (for accuracy assessment) partitions. The calibration 
dataset was further divided into training and testing. Training sets were 
used to train the neural network during specified training epochs, while 
its companion testing data was used after each epoch during training to 
evaluate the model performance on unseen data and stop the training 
when it is no longer useful for generalization (i.e., prevent overfitting of 
the model). 

The validation dataset, where all accuracy reporting was conducted 
on, consisted of 4/35 (about 11.5% or 2.4 M annual sequences) of the 
reference data, with the calibration data using the remaining data. This 
ratio between validation and calibration is typical for complex model 
development, it is usually in the 10%-15% range assuming large sample 
dataset (as it was in our case). The validation data were spatially disjoint 
from the calibration data, in essence a given pixel location would pro
vide data only for validation or calibration but not both. For the cali
bration data 28/35 (80% or 16.9 M sequences) was used for training and 
the rest (8.5% or 1.8 M sequences) for internal testing during model 
development. The calibration dataset was sampled N times to create N 
calibration sets. The reason was twofold: to reduce neural network 
performance variance that is caused by inherent randomness in its 
training, and to enhance our estimation of model performance on un
seen data. The best value of N depends on the level of confidence and the 
acceptable generalization error, but heuristically N = 10 is an acceptable 
norm (Iyer and Rhinehart, 1999). We determined it more practically by 
running the network N times, looking at the average performance, 
ranking the performances for different configurations, and observing 
when this ranking stabilized. We found that N = 8 was a good start for 

training sets of about 500,000 samples but when the size of data or 
network parameters increased, N can be lowered because the model 
variance also decreased. 

3.2. Model training and optimization 

Deep networks offer advanced modeling capabilities but also have 
high complexity. This poses a significant challenge as almost infinite 
architecture combinations (e.g., nodes per layer) and node parameters 
(e.g., activation functions) exist. Despite our considerable computa
tional resources and the large reference dataset, practical limitations 
dictated a step-by-step approach as simultaneous exhaustive parameter 
search was not possible. 

The simulation parameters can be divided in three main groups: 1) 
input features, 2) network structure (number of layers, neurons per 
layer, etc.), and 3) network optimization settings (training batch size, 
optimizer type, learning rate, etc). To keep things manageable, the 
simulation framework was designed in below four steps:  

a) Deciding on the best setting of network optimization parameters 
using a fixed network configuration, input features, and input data 
size.  

b) Finding the best combination of possible input features using the 
same network in step (a). 

c) Increasing network complexity step by step until there is no signifi
cant improvement in performance using the best input features 
found previously.  

d) Final model adjustments by revisiting optimization parameters. 

We considered the number of network parameters as a measure of 
network complexity, and assume the size of input data set should be 
multiple times bigger than the number of network parameters. For small 
network size, a factor of 10 times might be reasonable and feasible but as 
the network grows bigger, keeping this ratio become impractical 
because it increases the training time proportionally. Therefore, the 
regularization will be required at steps (c) and (d) method (we chose 
dropout method) in all of our network implementations to prevent 
network from being overfit without the need for too much input data. 
Note that each single run in the above steps (a-d) is actually a set of N 
simulations exactly under the same configuration but with different 
input calibration set, as described in the previous section, and the results 
from all of these N simulations are represented by a single number to 
compare this run to the others. 

3.3. Model candidates 

The general schematic of our approach is shown in Fig. 2. To assess 
the value of temporal and/or spatial information three network archi
tectures were tested. The first deep learner only examines individual 
pixel temporal information using a Long Short-Term Memory network 
(T-LSTM). The second network (ST-LSTM) adds expert-selected spatial 
neighboring features to the T-LSTM. The third network (C-LSTM) adds 
to the ST-LSTM automatically generated features using a convolutional 
neural network. We recognize that these may not be the optimal model 
candidates, as more advanced methods are continuously developed, for 
example multi-head self attention CNNs. Our intent is to evaluate here 
typical starting deep learning methods used as baseline for such 
implementations, with more advanced methods reserved for future work 
as the deep learning field matures further within the remote sensing 
community. 

Table 1 
Final dataset class distribution.  

Water Developed Grass/Shrub Forest Bare Agriculture Wetland Total 

1,407,689 7,131,290 3,657,994 2,574,143 1,091,321 3,888,984 1,430,939 21,182,360  
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The base data in all models were sequences of Landsat data and static 
topographic data. Each annual sequence contained several temporal 
records. Each record represented a specific observation day and sensor. 
For the T-LSTM the annual Landsat sequence was fed to a recurrent 
network (Fig. 2). Static topographic data were in the form of 1-D vector 
and for each pixel, there was one vector of static features corresponding 
to one annual sequence of Landsat-based features. The static features 
were processed by a standard multilayer neural network. Output fea
tures from the recurrent and the standard neural networks were 
concatenated and fed to a second multilayer network for further pro
cessing with the latter producing the assigned land cover to the input 
pixel. 

In the case of the ST-LSTM the only difference was that the recurrent 
network was also fed with expert-selected patch statistics from neigh
boring pixels. For the C-LSTM, in addition to the expert-selected spatial 
features, features selected automatically from a convolutional neural 
network were also included as inputs for the recurrent network (Fig. 2). 

3.3.1. Temporal LSTM (T-LSTM) 
This was the starting base model that processed multi-temporal 

spectral data. There were eleven base variables for each temporal 
observation for each pixel: Day-of-year (DOY), sensor type (Landsat 5/ 
7/8), six Landsat surface reflectance values, and three topography var
iables (elevation, slope, aspect). In addition, eight different spectral 
indices were considered as candidates, which have been reported in the 
literature to be useful for identification of different ground features such 
as vegetation, water, built-up area, bare soil, and soil wetness. The list of 
the reviewed indices and their equations is provided in appendix E. 
Among all of these indices, our experiments showed ENDISI (Chen et al., 
2019) significantly improved network performance. All spectral index 
calculations were done in Google Earth Engine while extracting Landsat 
data. From the network architecture perspective, different cell types 
proposed as building blocks for recurrent neural networks were 
considered. LSTM (Long Short-Term Memory) and GRU (Gated Recur
rent Unit) are the most popular types. LSTM was selected as initial ex
periments showed it was performing slightly better, and it has more 
trainable parameters. 

3.3.2. Spatio-temporal LSTM (ST-LSTM) 
As shown in Heydari and Mountrakis (2018), relying solely on 

spectral data is not sufficient to take advantage of deep neural network 
classifiers as they perform similarly to other classifiers. The next model 
added spatial data dimension by including texture features. Two spatial 
information extraction methods were considered: Gray-Level Co- 
occurrence Matrix (GLCM) and Local Binary Patterns (LBP). The LBP 
method finds local spatial patterns around a pixel and codifies it to a 
corner, edge, or middle of a homogeneous area (Ojala et al. 2002). As 
our initial tests did not show any benefit for LBP over GLCM, it was not 
considered further. 

The GLCM method generates a co-occurrence matrix from any image 
band of interest from which multiple metrics are calculated that are used 
to describe the texture around the pixel (Hall-Beyer, 2017a). GLCM 
produces various texture metrics for each pixel and can be organized in 
three main groups: contrast group, orderliness group, and descriptive 
statistics. Each group contains several metrics, which was tried indi
vidually and in combination. There is no clear best metric, since this 
depends on the application and GLCM parameters. Hall-Beyer (2017b) 
looked at this issue for a classification application based on Landsat data 
and recommended choosing Mean/Correlation (for general texture 
identification), Contrast/Dissimilarity (helpful for classes containing 
edge-like features), and Entropy (for more detailed texture study). Our 
analysis resulted in selection of four metrics: dissimilarity, entropy, 
mean, and variance. GLCM generation requires specifying two other 
parameters: GLCM window size and quantization level. The quantiza
tion level was fixed at 64. The above four GLCM features were generated 
for two window sizes (radius) of 5 and 15 pixels to represent different 
spatial scales. GLCM generation also requires picking a base band to do 
the spatial calculation on. Past studies have used either one of visual 
bands, the NIR band, or a generated band such as a principal component. 
In our case, selection of final GLCM features and base bands was the 
result of experimentation. The performance of a sample network was 
tested when fed by GLCM features generated from all potential bands 
and indices. The final GLCM base bands were two Landsat bands (blue, 
NIR) and two spectral indices (DD, ENDISI). At the end, we had 32 
GLCM features representing the combinations of the four base bands, the 
four metrics and the two neighborhood scales. 

Fig. 2. Designed system architecture. T-LSTM shows the building blocks of the basic model. The ST-LSTM model adds the ST-LSTM supplement to T-LSTM, and the C- 
LSTM model adds both ST-LSTM and C-LSMT supplements to the model. Resulting architectures are presented in Table 2. 
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For simplicity, a three-part name was adopted to designate each 
GLCM feature. For example, ENDISI_ent_15x64 denotes the GLCM en
tropy metric generated based on ENDISI band using a window size of 15 
and quantization level of 64. All GLCM calculations were done in Google 
Earth Engine with available functions. 

3.3.3. CNN and Spatio-Temporal LSTM (C-LSTM) 
The last and most complete model was built upon the ST-LSTM 

model by supplementing the expert-selected spatial features (GLCMs) 
with computer-generated convolutional features. In this model the CNN 
block in Fig. 2 was utilized and the spatial features generated by it were 
added to the input features of the recurrent network. The combination of 
six Landsat surface reflectance bands plus the elevation layer were 
selected as inputs to the CNN. For each sample, the neighborhood data 
for the chosen bands was extracted. Then standard 2-D convolutional 
filters without padding were used for conducting convolution to 
generate a 1-D vector as output. For example, for an input neighborhood 
of size 5, a 3x3 filter in the first convolutional layer reduced the 5x5 
input to 3x3 (5–3 + 1 = 3), and then a 3x3 filter in the second con
volutional layer reduced it to a spatial size of 1x1. The rest of network 
was the same as the Spatio-Temporal LSTM. 

3.4. Benchmark algorithms 

The Random Forest (RF) method, a popular classifier for large scale 
classification products (e.g. the NLCD) was used as baseline for com
parison to the deep learning models. One important distinction between 
the RF models (baseline models hereafter) and the proposed deep 
models is that in our designed network, the data has a built-in temporal 
dimension and is presented to the deep networks in the form of temporal 
sequences. This is not the case for the baseline models, which are not 
recurrent in nature. As each yearly record in our dataset contains on 
average about 50 timestamps, combining all time stamps of one year 
together and providing them as simultaneous input for baseline models 
was not feasible due to the large data volume, RF methods are not 
designed for such high dimensionality inputs. Furthermore, it would 
pose issues for generalizing to other sites as the input dimensionality 
would need to be kept to a fixed number (RF design limitation), while in 
reality the dimensionality varies due to variable clear day observations 
per year. Therefore, one candidate observation was selected from each 
season of the year as close as possible to the season midpoints (i.e., day- 
of-year values of 15, 106, 197, and 288). These four timestamps were 
concatenated to form the input feature vector. For each of the above 4 
timestamps, the same variables as the spatio-temporal recurrent neural 
network model (introduced in the next sections) were collected, 
including day-of-year, sensor type, six Landsat bands, selected spectral 
indices, and selected GLCM texture metrics. This composite feature 
vector was supplemented by topographic variables and the result is used 
for RF model training and validation. Different parameterization set
tings were tested to find the best RF model: number of estimators (from 
50 to 200), maximum tree depth (30/40/50/no limitation), and mini
mum leaf size (from 1 to 5). 

3.5. Accuracy assessment 

3.5.1. Metrics and dependencies 
Accuracy reporting was conducted exclusively on the validation 

dataset. One important consideration in accuracy assessment is the in
dependence of calibration and validation datasets. Spatial independence 
was ensured through selection of different pixels. However, temporal 
independence was not enforced as that would significantly limit the 
dataset sizes. All years were included in both calibration and validation 
to offer the ability for the models to adapt to any abnormal annual 
conditions (e.g., extreme weather) and be able to validate it. This is the 
normal practice in other literature that deal with time dimension, for 
example change detection using two fixed time stamps. As we seek 

balanced performance in all classes and overall accuracy is more 
representative of the performance of the dominant class, we opted to use 
the F1 metric1 for each class and then calculated the average of this 
value over all classes to obtain an aggregate performance measure. 
Minimum F1 value and overall accuracy were also calculated and re
ported. Model selection was based on higher average F1. If two models 
had very close average F1 values, the minimum F1 and overall accuracy 
were also considered to make a decision. The reported assessment was 
conducted on the entire validation dataset (2.4 M sequences) unless 
otherwise specified. It should be noted that each block may have a 
different share as listed in appendix C. Finally, when permitted by the 
dataset size, each classifier was simulated multiple times to obtain a 
higher confidence on its performance. 

3.5.2. Spatial edge samples representing challenging classifications 
In order to further assess algorithmic performance in challenging to 

classify pixels, a subset of the validation dataset was created. This 
validation dataset, called spatial edge samples, aimed at identifying 
pixels that are at the edges of differing LCLU areas. Each pixel under 
consideration (center pixel) was contrasted with its adjacent 8 neigh
boring pixels. We proceeded to count the number of neighbors with 
different labels than the label of the center pixel. Center pixels were 
assigned in three categories, having one differing neighbor, two 
differing neighbors or three or higher differing neighbors. For this pro
cess the labels were extracted using the most accurate model (C-LSTM) 
and the spatial edge condition should be consistent for at least 3 years to 
limit the effect of misclassifications. 

These samples offered a better insight on classification performance 
as they exclude samples surrounded with the same LCLU class. This 
limits the inclusion of homogenous areas that often bias accuracy 
assessment as they tend to artificially inflate accuracy (e.g. center of 
water bodies, dense forested areas, agricultural parcels). For consistency 
in our results section, we report accuracy statistics on both the spatial 
edge samples and the entire dataset. 

3.6. Algorithmic development 

Development and implementation of our model and data processing 
steps were conducted on different platforms with all coding using Py
thon. The Tensorflow environment was used for model development and 
simulation. Data extraction was done via the Google Earth Engine 
platform, then the data were downloaded locally. It was followed by 
pixel sampling and calibration/validation datasets generation. Although 
initial tests and model evaluation were conducted on our local resources, 
most model training took on a cluster of powerful GPU-enabled nodes 
(NVIDIA V100) available through NASA’s High-End Computing facil
ities at NASA Ames Research Center. We used up to 56 single-GPU and 
28 4-GPU nodes during different stages of model training, comparison, 
and selection, which also required corresponding data transfers and job 
scripting tasks. A more detailed description of the algorithmic imple
mentation is provided in appendix B. 

4. Results 

4.1. Model training and optimization parameters 

Due to the large reference dataset size, a dual step training process 
was followed. Initially, a randomly extracted subset was used to provide 
general feedback on training parameters − 560,000 samples for 
training, 140,000 samples for validation, and 280,000 samples for 
testing. 

1 F1 metric is defined for each class as the harmonic mean of the class pre
cision and recall. It is calculated asF1 = 2 × precision × recall / (precision +
recall). 
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Five learning rate optimization algorithms were considered: Ada
delta, Adagrad, Adam, RMSprop, and SGD as implemented in Tensor
flow/Keras. They were tested on a relatively simple network of LSTM 
(3x48) followed by two multi-layer networks with 16 and 32 nodes 
respectively. The Adam optimizer (with AMSgrad option set to True) 
was the best method under various initial learning rate settings. The SGD 
option resulted in highly variable performance but did not outperform 
the Adam optimizer. The other options provided performances between 
the above two, with Adadelta showing almost as good performance as 
Adam while being quicker.. We choose Adadelta for our main simula
tions to save time, and when the model architecture was finalized Adam 
was implemented in the last tuning stages to get the best possible 
performance. 

The following range of parameters was tested to identify the optimal 
solution:  

- Increasing LSTM subnetwork layers up to 6 and number of cells per 
layer up to 480,  

- Increasing D1 subnetwork layers up to 4 and number of neurons per 
layer up to 128,  

- Increasing D2 subnetwork layers up to 4 and number of neurons per 
layer up to 512,  

- Varying dropout ratio after LSTM layers within 0.2–0.4, and after 
dense layers within 0 – 0.2,  

- Adding L1/L2 regularization (as a replacement to dropout or in 
addition to it) to recurrent and/or dense networks with the regula
rization parameter ranging from 0.01 to 0.05,  

- Switching to Adam optimizer in last steps, and changing optimizer 
learning rate. For Adadelta, we changed it within 0.5 – 10, and for 
Adam within 0.001 – 0.035,  

- Examined sigmoid, tanh, and relu activations for dense subnetworks 
(activation function for LSTM subnet cells was fixed to tanh due to 
specific CUDA-based GPU implementation in our code),  

- Tested training batch size within the 256 – 4096 range. 

Our testing indicated that performance was not increasing after 
certain level of network complexity with ~2 M parameters offering a 
good balance. Dropout showed to be quite useful particularly for 

improving complex networks generalization, but L1/L2 regularization 
was not impactful. The Adam optimizer was better than Adadelta, but it 
became unstable with increasing learning rates.The tanh activation 
performed better than sigmoid and relu functions, while the batch size of 
1024 was the preferred choice. 

The final parameters of the selected models are listed in Table 2. Note 
that the reported network details (e.g., number of layers and cells in 
each layer) are not unique and other network configurations can provide 
similar performance. In fact, the variability in reported accuracy was 
very small (and indeed random, due to the intrinsic nature of neural 
networks) in some networks with millions of parameters. Therefore, the 
network details below should be considered as demonstrative. For the 
RF model different feature combinations were tested. When all features 
were included, the highest accuracy was obtained. For hyperparameter 
selection after testing different values for number of trees, tree depths, 
and minimum leaf sizes we found that classifier performance saturated 
above 100 trees, and minimum leaf size of 1 and depth of 50 provided 
best performance for both overall accuracy and average F1 accuracy. 

4.2. Comparison of baseline models and deep learning methods 

4.2.1. Quantitative comparison 
The validation dataset was organized in four different categories to 

capture model performance across varying levels of classification diffi
culty. Firstly, the entire validation dataset was used. While this dataset 
expresses algorithmic performance across all validation pixels results 
are biased by the large number of pixels that are easy to classify inde
pendently of the methodology used. Examples include pixels inside large 
homogenous areas, such as agricultural parcels, lake bodies, forests and 
urban centers. To focus on challenging pixels three spatial edge sample 
groupings were created following the process described in section 3.6. 
The entire validation dataset included 2,297,679 sample sequences, 
while the spatial edge dataset identified 735,833 samples having one 
differing neighbor, 582,241 samples with two differing neighbors, and 
468,667 samples with three or higher differing neighbors. 

Results are presented in Table 3 along with a targeted comparison 
between RF and the best performing deep network (C-LSTM) in Fig. 3. 

The entire dataset results are reported for completeness; however, 

Table 2 
Characteristics of selected deep network models.  

Model type T-LSTM ST-LSTM C -LSTM 

Number of model parameters 52,663 2,297,127 2,685,287 
Training parameters 
Batch size 1024 1024 1024 
Optimizer Adadelta Adam Adam 
Optimizer parameters Learning rate = 1.0 learning rate = 0.001, AMSgrad = True learning rate = 0.001, AMSgrad = True 
Final network architecture 
Layer structure:CNN layers: (# of filters and neighborhood size)  

per layer 
LSTM layers: # of cells per layer 
Multilayer network#1: # of neurons per layer 
Multilayer network#2: # of neurons per layer  

N/A   

48, 48, 48  

16, 16   

32, 32  

N/A   

320, 320. 320  

64,32   

256, 256, 256 

(128,3),  
(96,3)   

340, 340, 340  

32, 32   

128, 128, 128, 128 
Dropout regularization* 0.2, 0.2, 0 0.25, 0.1, 0 0.3,0.25,0.05,0.05 
Input features** 
T-LSTM DOY, sensor, Landsat SR 6bands, Topography, ENDISI 
ST-LSTM DOY, sensor, Landsat SR 6bands, Topography, ENDISI, DD_ent_5x64, ENDISI_ent_15x64, blue_savg_15x64 
C -LSTM CNN subnet input: Landsat SR 6 bands + Elevation 

Rest of network: DOY, sensor, Landsat SR 6bands, Topography, ENDISI, DD_ent_5x64, ENDISI_ent_15x64, 
blue_savg_15x64 

* Dropout ratios are given as a tuple of numbers and each number belongs to one of the blocks mentioned in the Layer Structure row. If not zero, the dropout ratio will 
be applied to all layers of that block. 
** Abbreviations: DOY (Day Of Year), ENDISI (Enhanced Normalized Difference Impervious Surfaces Index), DD (Drought Distance index). 
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conclusions are difficult to extract as the included pixels are of varying 
difficulty. In general, though it seems that the combination of spatial and 
temporal information presented to the RF outperforms the temporal 
only T-LSTM deep neural network. As a reminder the RF uses 4 temporal 
scenes per year and various spatial features, while the T-LSTM would 
typically have longer temporal sequences, however without any neigh
boring spatial information. On the other hand, it is also clear that when 
spatial information complements the temporal information presented to 
a deep learning method, either as expert-defined features as in the ST- 
LSTM case or automatically extracted through convolution as in the C- 
LSTM case, deep learning methods considerably outperform the RF 
benchmark classifier. These improvements are evident across all LCLU 
classes and while not large in absolute values they are substantial 
considering the portion of the RF errors they are able to correct. 

A clearer algorithmic comparison can be conducted using the spatial 
edge groups, looking more specifically where different LCLU classes may 
be directly adjacent. Results here overwhelmingly favor deep learning 
methods. As expected, all models have reduced accuracy as the heter
ogenous LCLU neighborhoods become progressively more apparent 
(differing neighbors from 1 to 3 or more). However, the RF performance 
takes a major hit decreasing to about 70% on average, even with a single 
differing neighbor, while deep learners hold at 86% or higher. Grass and 
bare land classes show the highest accuracy drops at 65.5% and 63.5%, 
respectively for the RF, but they are in the 79.4%-96.3% range for the 
deep learners. We should note again here that the reduced RF accuracy is 
the combined effect of limited multi-temporal support and internal 
algorithmic limitations. 

The spatial edge sample analysis identifies the C-LSTM as the clear 
winner from the three tested deep learning methods. The bar graph of 

Fig. 3 contrasts further the best deep learning method (C-LSTM) with the 
RF benchmark classifier. Even looking at the less restrictive spatial edge 
samples with only one differing neighbor C-LSTM improvements range 
from 10.5% for the water class and 17.7% for the forest class to 24.7% or 
higher for the other classes. The highest improvement can be found with 
32.8% for the bare class. These improvements are highly convincing 
considering the spatial edge dataset size (468,667 samples or higher) 
and geographic distribution across the continental U.S.. Improvements 
are also more pronounced with higher differing neighbors suggesting 
that our hypothesis that deep learning methods are particularly suited 
for difficult classifications to be true. Further details on error (confusion 
matrices) and class precision/recall metrics for each case in Fig. 3 are 
presented in appendix E. 

Another important factor in assessing the C-LSTM performance is the 
consistency on the obtained results. Appendix D presents the minimum 
and average F1 accuracy of the forty best performing C-LSTM archi
tectures. Results indicate very small variability in classification accu
racy, thus enforcing more the validity of the C-LSTM as a reliable 
classifier. 

4.2.2. Qualitative comparison 
To further compare the classification outputs of the four methods, 

two sites were selected north of Atlanta, GA (see Figs. 4 and 5 map). Both 
sites were contained on a single Landsat scene (path 16, row 31). Clas
sification products were created using available Landsat observations for 
the year 2016. Both sites support the progressive improvements in the 
Developed class presented in Table 4. While large, developed areas were 
captured by all methods, isolated pixels, such as roads and houses sur
rounded by vegetation were more consistently captured by the deep 

Table 3 
Accuracy over the entire dataset and spatial edge samples.  

Fig. 3. Random forest classification accuracy loss compared to C-LSTM classifier.  
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learners (see site 1 top left and right side of site 2). Also, RF tends to 
confuse grass for agriculture more often, see center block in site 2. Deep 
learners also avoid classification of bright buildings as bare land, an 
error present by the RF classifier on the right side of site 2. Agriculture 
also seems to be captured more consistently by the deep learners, with 
more consistent shapes when spatial information is incorporated (ST- 
LSTM and C-LSTM). In general, C-LSTM maps tend to have a less salt- 
and-pepper effect than the other maps, which could be attributed to 
the addition of convolutional features that more efficiently incorporate 
the pixel’s neighborhood context. 

4.3. Value of multi-sensor Landsat observations 

Considering the long temporal span of Landsat observations and the 
multiple sensors involved one important question is whether classifi
cation accuracy is consistent across Landsat sensors. To investigate this, 
an additional accuracy assessment was conducted by simulating (not 
retraining) the pre-trained C-LSTM on validation sequences on various 
sensor combinations. It should be noted that Landsat 7 sequences 
included exclusively pixels not affected by the Scan Line Corrector 
failure. Results are reported in Table 4, with individual sensor annual 

sequences extracted from the entire and the spatial edge datasets. 
Annual sequences may vary in space and time depending on data 
availability, however due to the large number of sequences comparisons 
are considered valid. 

Considering that small accuracy differences are expected due to 
spatiotemporal sample variability, all three Landsat sensors offer similar 
classification accuracies and the same result is obtained for spatial edge 
samples, though with lower accuracies. This is particularly important as 
it speaks to the legacy of the Landsat program; it offers extensive 
monitoring capabilities with consistent observations of similar high 
quality since at least the launch of Landsat 5 in 1985. The slightly better 
Landsat 8 performance may be due to more precise and better-quality 
instruments. Landsat 7 minor underperformance may be a result of its 
longer temporal overlap with our reference dataset leading to higher 
potential for temporal variability due to environmental dynamics. 
Landsat sensors comparison reported in other research also shows 
slightly better performance of Landsat 8 compared to Landsat 5 and 
Landsat 7 (Poursanidis et al., 2015; Liem et al., 2019) but it may also 
depend on the classifier type and its parameters (He et al., 2015). 

Another important question is whether having multiple concurrent 
Landsat sensors offers classification accuracy benefits. NASA and USGS 

Fig. 4. Visual comparison of classification results (Site 1).  
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have been advocating for two or more Landsat sensors operating 
simultaneously as a safeguard for sensor failures but also to study earth 
dynamics requires shorter revisit times (Wulder et al., 2019; Wu et al., 
2019). Here, we investigate the value of two concurrently operating 
Landsat sensors, the fusion of Landsat 5 and 7, and fusion of Landsat 7 
and 8 sensors. Unfortunately, all three sensors did not overlap to study 
them further. 

To extract relevant annual sequences from the validation dataset, 
first sequences having two sensor information were extracted. Then 
from those multi-sensor sequences single sensor observations were 
extracted to create matching sequences in space and time (e.g., a specific 
pixel in a specific year). This led to two single sensor sequences and one 
fusion sequence for common spatial locations and years. 

The results are shown in Tables 5 and 6, respectively. Comparisons 

Fig. 5. Visual comparison of classification results (Site 2).  

Table 4 
Overall and class F1 statistics for single Landsat sensor (sample spatial locations may differ).  

Entire Dataset 

Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 

Landsat 5 1,240,935 94.2% 94.8% 98.4% 95.1% 91.3% 94.6% 98.0% 93.3% 93.1% 
Landsat 7 2,297,126 93.8% 94.1% 98.1% 95.4% 91.2% 93.4% 97.7% 92.5% 90.6% 
Landsat 8 882,002 94.9% 95.1% 98.6% 96.3% 91.9% 94.4% 97.0% 93.6% 94.3% 
Spatial Edge samples with differing neighborhood = 1 
Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 
Landsat 5 399,236 87.5% 87.7% 92.9% 90.6% 80.5% 88.6% 89.7% 86.1% 85.3% 
Landsat 7 735,631 86.3% 86.1% 92.3% 90.5% 79.0% 86.5% 88.7% 84.2% 81.7% 
Landsat 8 281,439 88.0% 88.0% 93.4% 92.0% 81.5% 88.1% 86.8% 87.2% 86.8%  
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can be made directly within each table but only indirectly between the 
two tables as they are composed of different locations/years (although 
the large number of samples reduces variability). The fusion of Landsat 
5/7 or Landsat 7/8 provides a considerable gain, especially in the 
difficult to classify spatial edge samples where improvements in average 
F1 accuracy approach 10%. Classes benefiting more from Landsat fusion 
are the grass (up to 15.4%) and wetland (up to 15.1%), followed by 
agriculture (up to 12.9%). Results are consistent across 5/7 and 7/8 
Landsat fusion. These improvements are substantial when considering 
available improvement room from single sensor observations and speak 
to the value of overlapping Landsat sensors, even for high level LCLU 
classification schemes with basic classes. They are also consistent with 
prior work by Liem et al. (2019) and Bonansea et al. (2018). 

5. Discussion and conclusions 

Landsat has been the workhorse of medium resolution environ
mental analysis. After USGS’s decision to make Landsat data freely 
available, usage has exponentially increased. Data organization and 
manipulation capabilities offered by cloud platforms such as the Google 
Earth Engine coupled with advanced parallel computing power make 
continuous, consistent, near real-time earth monitoring feasible. USGS’s 
Land Change Monitoring, Assessment, and Projection (LCMAP) activ
ities are a prime example of harvesting the extensive Landsat record. 

Classification accuracy of large-scale monitoring hovers around 
80%, see Grekousis et al. (2015) for a comparison of global mapping 
products, leaving room for improvement. Deep learning methods have 
offered significant advancements in other fields of study and as illus
trated in our literature review, they have recently received considerable 
attention for analysis of earth observations. One major limiting factor 
constraining deep learners from reaching their full potential is the 
relatively small reference datasets typically employed in our commu
nity. As shown by Heydari and Mountrakis (2019) in a meta-analysis of 
deep neural networks in remote sensing these small datasets have led to 
accuracy saturation. Here, our in-house substantially larger dataset 
supported for the first time the thorough investigation of the deep 
learning methods applicability on the extensive Landsat archive. 

Results clearly show there are considerable gains compared to 
traditionally employed classifiers, such as Random Forests. While clas
ses such as water and forest have been found easy to classify by other 

studies, our results show that improvements can be substantial for 
traditionally difficult to classify classes such as bare and developed (for 
example see Wickham et al., 2021, for their assessed performance for 
NLCD map). These improvements can be attributed to two architectural 
benefits of deep learning methods. Firstly, borrowing from applications 
in other fields, they easily support extensive time-series analysis. This is 
paramount to take advantage of the extensive Landsat temporal record. 
Traditional classifiers, such as Random Forests or Support Vector Ma
chines require a predefined temporal length (e.g., 4 scenes per year). 
This is an important limitation as scene availability is not guaranteed, 
for example due to cloud coverage. Here, our reported results take this 
limitation into account and approach the RF implementation from the 
practical implementation perspective. Therefore, the obtained RF ac
curacies are the combined effect of data and algorithmic limitations. 
Another issue with RF methods is that they do not architecturally sup
porting direct temporal linkages between these different timestamps as 
each input is treated independently. For example, the green band in time 
t and the green band in time t + 1 are not algorithmically internally 
linked through a temporal dependency. The second architectural benefit 
of deep learning methods is the ability to automatically extract spatial 
features. Typically, spatial features are pre-defined, then calculated and 
inserted as additional input vectors (e.g., the standard deviation of a 3x3 
window on an NDVI layer). Deep learners, and in particular convolu
tional neural networks, have the ability to automatically extract features 
of interest as part of their training process. Although spatial relation
ships are not as pronounced at the 30 m Landsat scale when compared to 
other high-resolution datasets (e.g., for face recognition), it was 
demonstrated that they still hold considerable explanatory value. 

While simulation times can vary considerably depending on hard
ware and number of available Landsat scenes, it is helpful to provide 
demonstrative numbers. We simulated one Landsat scene for the entire 
year 2016 using all cloud free observations (see Fig. 5). The RF method 
took 4762 s using CPU resources (Intel Core i7 @ 4.2 GHz), while the T- 
LSTM, ST-LSTM and C-LSTM took 5622, 10,790 and 16,851 s respec
tively using GPU resources (NVIDIA RTX A5000 with 16 GB of RAM +
AMD Ryzen 9 3950X CPU @ 3.5 GHz). These numbers do not include 
data preparation, which could also add significantly to processing times. 
Also, none of the methods were optimized in their implementations. In 
general, it seems there is a 2x-3x simulation time cost when moving to 
deep learners, which is not inconsiderable for large scale product 

Table 5 
Overall and class F1 statistics for Landsat 5, 7 and their fusion (same sample spatial locations).  

Entire Dataset 

Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 

Landsat 5 1,240,603 94.2% 94.8% 98.5% 95.1% 91.3% 94.6% 98.0% 93.4% 93.1% 
Landsat 7 1,240,603 93.5% 93.9% 97.8% 95.0% 90.9% 93.5% 97.7% 92.3% 89.9% 
Landsat 5 + 7 1,240,603 98.0% 98.2% 99.2% 98.1% 97.5% 97.0% 99.4% 98.3% 98.2% 
Spatial Edge samples with differing neighborhood = 1 
Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 
Landsat 5 399,116 87.4% 87.7% 92.9% 90.6% 80.5% 88.6% 89.7% 86.1% 85.3% 
Landsat 7 399,116 85.7% 85.6% 91.9% 89.9% 78.6% 86.5% 88.1% 83.7% 80.5% 
Landsat 5 + 7 399,116 95.0% 95.1% 96.1% 95.9% 92.8% 93.1% 96.3% 95.6% 95.6%  

Table 6 
Overall and class F1 statistics for Landsat 7, 8 and their fusion (same sample spatial locations).  

Entire Dataset 

Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 

Landsat 7 881,781 93.5% 93.7% 98.3% 95.5% 90.5% 92.6% 97.3% 91.5% 90.3% 
Landsat 8 881,781 94.9% 95.1% 98.6% 96.3% 91.9% 94.4% 97.0% 93.6% 94.3% 
Landsat 7 + 8 881,781 98.1% 98.2% 99.3% 98.3% 97.4% 96.7% 99.4% 98.2% 98.4% 
Spatial Edge samples with differing neighborhood = 1 
Sensor # sequences Overall Ac. Aver. F1 Water Imp Grass For Bare Agr Wetld 
Landsat 7 281,357 85.6% 85.2% 92.3% 90.2% 77.2% 85.4% 88.1% 82.7% 80.8% 
Landsat 8 281,357 88.7% 88.0% 93.5% 92.0% 81.5% 88.1% 86.7% 87.2% 86.8% 
Landsat 7 + 8 281,357 95.1% 95.1% 96.2% 96.2% 92.6% 92.7% 96.6% 95.6% 95.8%  
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generation. 
This work should be considered as the starting point for deep 

learning methods implementation in large-area monitoring. The archi
tectures employed, the combinations of CNN to capture spatial re
lationships and LSTM for temporal relationships, are common 
architectures and the field is constantly advancing. While we optimized 
our networks for the given architectures, there are numerous and 
continuous advancements in the deep learning field, that could offer 
further improvements. Our community has already started to examine 
different architectures. One example is using another sequence pro
cessing cell named GRU (Gated Recurrent Unit) instead of the employed 
LSTM. The GRU structure is simpler than the LSTM, but has showed 
good performance in various applications of remote sensing data such as 
crop disease detection by Bi et al. (2020), hyperspectral image classifi
cation by Pan et al. (2020), or combined CNN + GRU architecture for 
crop classification by Li et al. (2019). Specialized convolutional modules 
are another path of innovation. Examples include depthwise separable 
convolution used in Yu et al. (2020) to develop a less complex yet 
powerful design, integrating a CNN network with attention mechanisms 
to weight features more efficiently (Tian et al., 2021), or multi-level 
encoder-decoder approach of fully convolutional network in Nemni 
et al. (2020). 

With respect to sampling, our dataset was intentionally based 
exclusively on earth observations (Landsat and topography). This sup
ports generalization at multiple spatial and temporal extents. However, 
the developed models are not yet ready for continental application. Even 
though no accuracy deficiencies were associated with specific classes, 
different sampling designs should be considered, especially with respect 
to rare classes. More importantly, our validation dataset, while not 
spatially overlapping with the calibration data, was still extracted from 
adjacent pixels within the 84 blocks. For proper accuracy assessment of 
a continental classifier, random samples generated across the U.S. would 
be needed. Finally, our sample dataset only considered Landsat obser
vations from Landsat missions 5, 7, and 8. With the recent launch of 
Landsat 9 and its expected improvements over prior Landsat missions 
while keeping its data continuity, more enhanced model performance 
seems readily achievable (Masek et al., 2020). There are current efforts 
to harmonize Landsat and Sentinel-2 data which could offer additional 
monitoring capabilities for a short historical period and moving into the 
future (see Q. Wang et al., 2017; E. D. Chaves et al., 2020; Shang and 
Zhu, 2019). 

The work presented in this manuscript falls under pixel-based clas
sifiers. There is another approach to classification, a scene-based one. In 
the latter case, an entire patch is presented to an algorithm and a single 
label is assigned to it (e.g. airplane, house). Scene-based approaches are 
more applicable to observations of higher spatial resolution (1–4 m), 
where individual land objects can be seen and extracted. In the future, it 
would be interesting to investigate fusion of pixel and scene based 
methods along with fusion of datasets of different spatial resolution. 

To the best of our knowledge, this is the first investigation of deep 
learning methodologies that uses a substantially large reference dataset 
while it amplifies algorithmic performance differences through the use 
of LCLU spatial edge samples for targeted evaluation. The benefits of the 
deep learning methodologies are evident and are also consistent across 
all LCLU classes. Our work also examined the practical value of having 
two, instead of one, Landsat sensors concurrently mapping our planet. 
Results suggest there are substantial classification increases across all 
classes through sensor fusion, further justifying the decision to have at 
least two Landsat sensors in orbit at all. This is important not only for 
redundancy in case of a sensor malfunction but also provides improved 
mapping capabilities, even for basic Anderson Level I classification 
schemes. 

Future work could include multiple topics. Firstly, a randomly 
distributed dataset would be necessary to further train and assess a deep 
learning method from the operational perspective of continental map
ping. Also, repetition of the experiment with different calibration/ 

validation dataset distributions and repetitions would increase confi
dence in the obtained results. Secondly, additional deep architectures 
could be tested to identify a good balance between network complexity 
and mapping accuracy. Thirdly, it is important to consider fusion with 
Sentinel sensors, as both information content (shorter revisit times) and 
type (spatial resolution, radar features) may offer additional benefits. 
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