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A B S T R A C T   

Land cover is an integral component for characterizing anthropogenic activity and promoting sustainable land 
use. Mapping distribution and coverage of land cover at broad spatiotemporal scales largely relies on classifi-
cation of remotely sensed data. Although recently multi-source data fusion has been playing an increasingly 
active role in land cover classification, our intensive review of current studies shows that the integration of 
optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR) observations has not been 
thoroughly evaluated. In this research, we bridged this gap by i) summarizing related fusion studies and assessing 
their reported accuracy improvements, and ii) conducting our own case study where for the first time fusion of 
optical, radar and waveform LiDAR observations and the associated improvements in classification accuracy are 
assessed using data collected by spaceborne or appropriately simulated platforms in the LiDAR case. Multi-
temporal Landsat-5/Thematic Mapper (TM) and Advanced Land Observing Satellite-1/ Phased Array type L-band 
SAR (ALOS-1/PALSAR) imagery acquired in the Central New York (CNY) region close to the collection of 
airborne waveform LVIS (Land, Vegetation, and Ice Sensor) data were examined. Classification was conducted 
using a random forest algorithm and different feature sets in terms of sensor and seasonality as input variables. 
Results indicate that the combined spectral, scattering and vertical structural information provided the maximum 
discriminative capability among different land cover types, giving rise to the highest overall accuracy of 83% 
(2–19% and 9–35% superior to the two-sensor and single-sensor scenarios with overall accuracies of 64–81% and 
48–74%, respectively). Greater improvement was achieved when combining multitemporal Landsat images with 
LVIS-derived canopy height metrics as opposed to PALSAR features, suggesting that LVIS contributed more useful 
thematic information complementary to spectral data and beneficial to the classification task, especially for 
vegetation classes. With the Global Ecosystem Dynamics Investigation (GEDI), a recently launched LiDAR in-
strument of similar properties to the LVIS sensor now operating onboard the International Space Station (ISS), it 
is our hope that this research will act as a literature summary and offer guidelines for further applications of 
multi-date and multi-type remotely sensed data fusion for improved land cover classification.   

1. Introduction 

Land cover is a fundamental attribute that links physical environ-
ments and human activities. As a key determinant of land use, it varies at 
different spatial scales from local to global and temporal scales from 
days to millennia (Cihlar, 2000). Timely and accurate information on 
land cover has been identified as a critical information component for a 
broad range of environmental and socioeconomic studies and applica-
tions, including forest management, desertification control, biodiversity 
conservation, sustainable land use planning, and climate change 

monitoring (e.g. Chapin III et al., 2000; Douglas, 1999; Jansen and 
Gregorio, 2002; Penner, 1994; Skole, 1994; Vitousek, 1994). Knowledge 
on land cover and the associated dynamics is increasingly required by 
research scientists, governmental agencies and nonprofit organizations 
to improve understanding on interactions between the natural landscape 
and humans and to promote better decision making that will increase 
socioeconomic welfare while preserving limited land and biodiversity 
resources. 

Remote sensing provides a spatially continuous and highly consistent 
representation of the Earth’s surface (Foody, 2002), and thus has been 
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Table 1 
Examples of land cover (and/or land use) classification through multi-type data fusion (published in peer-reviewed journals since 2000).  

Authors Objective(s) Study site(s) Sensors Classification 
algorithm(s) 

Accuracy 
improved over 
the use of 
single-type data 

Optical SAR LiDAR 

Adams and 
Matthews 
(2018) 

Shrubland mapping 
in a managed forest 
landscape 

Southeastern Ohio, USA Landsat-8 OLI*  Leica ALS50 Random forest (RF) 9% (OA: overall 
accuracy) 

Adrian et al. 
(2021) 

Crop type mapping An agricultural site in 
Columbia, MO, USA 

Sentinel-2* Sentinel-1*  Deep learning (DL) − 4–30% (OA), 
− 0.20–0.21 
(Kappa) 

Adriano et al. 
(2019) 

Building damage 
mapping 

Palu, Indonesia Sentinel-2*, 
PlanetScope 

Sentinel-1*, 
ALOS-2 
PALSAR-2*  

RF 1–3% (OA) 

Alonzo et al. 
(2014) 

Urban tree species 
mapping 

Santa Barbara, CA, USA AVIRIS  Riegl Q560 Canonical 
discriminant 
analysis (CDA) 

4–51% (OA) 

Amarsaikhan et al. 
(2010) 

Urban land cover 
classification 

Ulaanbaatar, Mongolia QuickBird TerraSAR-X  Maximum 
likelihood (ML) 

13% (OA) 

Attarchi and 
Gloaguen (2014) 

Mountainous forest 
classification 

Hyrcanian Forest (Loveh), 
Iran 

Landsat-7 ETM+ ALOS-1 
PALSAR  

ML, RF, support 
vector machine 
(SVM), neural 
network (NN) 

− 3–12% (OA) 

Blaes et al. (2005) Crop identification Central Belgium SPOT XS*, 

Landsat-7 ETM+

ERS-2*, 

Radarsat-1*  
ML 2–37% (OA) 

Bork and Su (2007) Rangeland 
vegetation 
classification 

Aspen Parkland, Alberta, 
Canada 

Aerial photos 
(RGB)#  

Optech 
ALTM2025 

ML 16–28% (OA) 

Cai et al. (2020) Wetland mapping The Dongting Lake 
wetland, Hunan Province, 
China 

Sentinel-2*, MODIS 
* 

Sentinel-1*  Stacked 
generalization 

7% (OA), 0.05 
(Kappa) 

Cho et al. (2012) Savanna tree species 
mapping 

Kruger National Park, 
South Africa 

HiFIS  Small-footprint 
LiDAR# 

ML 3–6% (OA) 

Chust et al. (2004) Mediterranean land 
cover discrimination 

Minorca Island, Spain SPOT XS* ERS-1/2*  ML 0.01–0.08 
(Kappa) 

Dalponte et al. 
(2008) 

Classification of 
complex forest areas 

Bosco della Fontana 
Natural Reserve, Italy 

AISA Eagle  Optech 
ALTM3100 

SVM, ML, k-nearest 
neighbor 

0.01–0.05 
(Kappa) 

Dalponte et al. 
(2012) 

Tree species 
classification over a 
mountain area 

Southeastern Trento, Italy AISA Eagle, 
GeoEye-1  

Optech 
ALTM3100EA 

SVM, RF 8–11% (OA), 
0.11–0.14 
(Kappa) 

Du et al. (2021) Land cover 
classification 

Trento, Italy and 
University of Southern 
Mississippi Gulf Park 
campus, MS, USA and 
University of Houston 
campus, TX, USA 

Hyperspectral 
imagery#  

LiDAR-derived 
elevation# 

DL 1–2% (OA) 

Fagan et al. (2018) Pine plantation 
mapping 

Southeastern U.S. Landsat-5 TM*  Riegl VQ-480 Decision tree (DT) 2–5% (OA) 

Feng et al. (2019a) Coastal land cover 
classification 

Yellow River Delta, China Sentinel-2* Sentinel-1*  DL 3–30% (OA), 
0.04–0.34 
(Kappa) 

Feng et al. 
(2019b)+

Urban land use 
mapping 

University of Houston 
campus, TX, USA 

Hyperspectral 
imagery#  

LiDAR-derived 
DSM# 

DL 8–38% (OA), 
0.09–0.42 
(Kappa) 

Forzieri et al. 
(2013) 

Fine-scale mapping 
of heterogeneous 
urban/rural 
landscapes 

Marecchia River, Italy ADS40, MIVIS  LiDAR-derived 
DTM and DSM# 

ML, spectral angle 
mapper (SAM), 
spectral information 
divergence (SID) 

5–18% (OA) 

Fu et al. (2017) Wetland vegetation 
mapping 

Sanjiang Plain, China Gaofen-1 ALOS-1 
PALSAR, 
Radarsat-2  

RF − 7–37% (OA), 
− 0.08–0.50 
(Kappa) 

Furtado et al. 
(2015) 

Land cover 
classification of the 
Amazon várzea 

The Lago Grande de Curuai 
floodplain, Pará, Brazil 

Landsat-5 TM Radarsat-2  DT 1–17% (OA), 
0.01–0.11 
(Kappa) 

Geerling et al. 
(2007) 

Floodplain 
vegetation 
classification 

A floodplain along the river 
Waal, Netherlands 

CASI  Optech 
ALTM2033 

ML 6–27% (OA), 
0.06–0.28 
(Kappa) 

Ghamisi et al. 
(2017) 

Classification of 
urban/rural 
landscapes 

University of Houston 
campus, TX, USA and 
Trento, Italy 

CASI, AISA Eagle  LiDAR-derived 
DSM#, Optech 
ALTM 3100EA 

RF, DL 3–29% (OA), 
0.03–0.32 
(Kappa) 

Guo et al. (2011) Urban scene 
classification 

Biberach, Germany Applanix DSS 22 M 
(RGB)  

Riegl LMS-Q560 RF 2–14% (OA) 

Hartling et al. 
(2019) 

Urban tree species 
classification 

Forest Park, St. Louis, MO, 
USA 

WorldView-2/3  LiDAR-derived 
DTM, DSM and 
intensity# 

DL, SVM, RF 3–4% (OA), 
0.03–0.05 
(Kappa) 

Urban classification CASI-1500  SVM 

(continued on next page) 
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Table 1 (continued ) 

Authors Objective(s) Study site(s) Sensors Classification 
algorithm(s) 

Accuracy 
improved over 
the use of 
single-type data 

Optical SAR LiDAR 

Hasani et al. 
(2017) 

University of Houston 
campus, TX, USA 

LiDAR-derived 
DSM# 

6–14% (OA), 
0.07–0.16 
(Kappa) 

Heckel et al. 
(2020) 

Forest cover 
delineation 

Thuringia, Germany and 
southern Kruger National 
Park, South Africa 

Sentinel-2A Sentinel-1A 
*  

RF 0–8% (OA) 

Held et al. (2003) Tropical mangrove 
mapping 

The Daintree River estuary, 
Queensland, Australia 

CASI AIRSAR  ML 6–19% (OA) 

Hong et al. (2022) Classification Houston, TX, USA and 
Trento, Italy 

Hyperspectral 
imagery#  

LiDAR-derived 
imagery# 

DL 8–25% (OA), 
0.09–0.30 
(Kappa) 

Hong et al. (2021) Classification 1University of Houston 
campus, TX, USA 
2Berlin, Germany and Hong 
Kong, China 

1CASI-1500 
2Sentinel-2 

2Sentinel-1 1LiDAR-derived 
imagery# 

DL 19–26% (OA), 
0.10–0.28 
(Kappa) 
212–23% (OA), 
0.11–0.43 
(Kappa) 

Hribljan et al. 
(2017) 

Tropical mountain 
peatland mapping 
and soil carbon 
storage estimation 

Ecuadorian Andes Landsat-5 TM* ALOS-1 
PALSAR*, 
Radarsat-1*  

RF 4–29% (OA) 

Huang et al. 
(2007) 

Land cover 
classification 

St. Louis, MO, USA Landsat-7 ETM+* Radarsat-1  ML 1–10% (OA) 

Hütt et al. (2016)+ Land use/land cover 
and crop 
classification 

Sanjiang Plain, China Formosat-2 TerraSAR-X 
*  

ML, RF 2–16% (OA), 
0.03–0.21 
(Kappa) 

Ienco et al. (2019) Land cover mapping Reunion Island, France and 
Koumbia, Tuy, Burkina 
Faso 

Sentinel-2* Sentinel-1*  DL 6–16% (OA), 
0.07–0.19 
(Kappa) 

Iervolino et al. 
(2019) 

Classification of a 
semiarid landscape 

Maspalomas Special 
Natural Reserve, Spain 

WorldView-2 TerraSAR-X  ML 2% (OA), 0.04 
(Kappa) 

Inglada et al. 
(2016) 

Early crop type 
identification 

Toulouse, France Landsat-8 OLI* Sentinel-1A 
*  

RF 0.01–0.10 
(Kappa) 

Jones et al. (2010) Coastal tree species 
mapping 

Gulf Islands National Park 
Reserve, British Columbia, 
Canada 

AISA Dual Eagle +
Hawk  

TRSI Mark II SVM 1% (OA), 
0 (Kappa) 

Ke et al. (2010) Forest species 
classification 

Heiberg Memorial Forest, 
NY, USA 

QuickBird  Leica ALS50 DT 0.01–0.19 
(Kappa) 

Koetz et al. (2008) Land cover 
classification for 
forest fire 
management 

Aix-en-Provence, France AISA Eagle  Optech 
ALTM3100 

SVM 6–44% (OA), 
0.07–0.49 
(Kappa) 

Kuplich et al. 
(2000)+

Land use 
classification 

Campinas, São Paulo State, 
Brazil 

Landsat-5 TM ERS-1*  ML 3–45% (OA) 

Kwan et al. 
(2020a, 2020b) 

Land cover 
classification 

University of Houston 
campus, TX, USA 

Hyperspectral 
imagery#  

LiDAR-derived 
elevation# 

Joint sparse 
representation 
(JSR), SVM, DL 

− 2–6% (OA), 
− 0.02–0.07 
(Kappa) 

Laurin et al. (2013) Tropical forest and 
land cover mapping 

Border of Sierra Leone and 
Liberia 

Landsat-5 TM, 
ALOS-1 AVNIR-2 

ALOS-1 
PALSAR*  

ML, NN 2–34% (OA), 
0.03–0.39 
(Kappa) 

Lee and Shan 
(2003) 

Coastal zone 
mapping 

Coastal Camp Lejeune, NC, 
USA 

IKONOS  NASA Airborne 
Topographic 
Mapper 

ML 1–2% (OA) 

Li et al. (2019) Land cover mapping University of Houston 
campus, TX, USA and 
Rochester, NH, USA 

Hyperspectral 
imagery#, 
Headwall 
Hyperspec Imaging 
Spectrometer  

LiDAR-derived 
DSM#, Riegl VQ- 
480 

SVM 3–29% (OA), 
0.05–0.31 
(Kappa) 

Liao et al. (2018) Tree species 
mapping 

Wijnendale Forest, 
Belgium 

Airborne Prism 
EXperiment (APEX)  

TopoSys Harrier 
56 

SVM, DL 4–25% (OA), 
0.05–0.33 
(Kappa) 

Liu et al. (2017) Urban tree species 
mapping 

City of Surrey, British 
Columbia, Canada 

CASI-1500  Leica ALS70-HP 
* 

RF 9–19% (OA), 
0.10–0.20 
(Kappa) 

Lu et al. (2011) Tropical land cover 
classification 

City of Altamira, Brazil Landsat-5 TM ALOS-1 
PALSAR, 
Radarsat-2  

ML 0–54% (OA), 
− 0.01–0.60 
(Kappa) 

Luo et al. (2016) Land cover 
classification 

Zhangye, Gansu Province, 
China 

CASI-1500  Leica ALS70 ML, SVM 8–68% (OA), 
0.13–0.71 
(Kappa) 

McNairn et al. 
(2009) 

Operational annual 
crop inventory 

Five pilot sites across 
southern Canada 

SPOT-4/5*, 

Landsat-5 TM* 
Radarsat-1*, 

Envisat 
ASAR*  

DT 1–16% (OA), 
0–0.23 (Kappa) 

(continued on next page) 
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Table 1 (continued ) 

Authors Objective(s) Study site(s) Sensors Classification 
algorithm(s) 

Accuracy 
improved over 
the use of 
single-type data 

Optical SAR LiDAR 

Michelson et al. 
(2000) 

Swedish land cover 
classification 

The Genevad River basin, 
Sweden 

Landsat-5 TM ERS-1*  ML, sequential 
maximum a 
posteriori (SMAP), 
NN 

6–20% (OA), 
0.07–0.19 
(Kappa) 

Naidoo et al. 
(2012) 

Savanna tree species 
classification 

The Greater Kruger 
National Park, South Africa 

CASI-1500  Waveform 
LiDAR# 

RF 7–56% (OA), 
0.09–0.66 
(Kappa) 

Park et al. (2018) Paddy rice mapping Sutter County, CA, USA 
and Dangjin, South Korea 

Landsat-5 TM* ALOS-1 
PALSAR*, 
Radarsat-1*  

RF, SVM − 1–17% (OA), 
− 0.02–0.24 
(Kappa) 

Rasti and Ghamisi 
(2020) 

Land cover 
classification 

University of Houston 
campus, TX, USA and 
Trento, Italy 

ITRES CASI-1500, 
AISA Eagle  

Optech Titam 
MW, Optech 
ALTM 3100EA 

RF 12–54% (OA), 
0.14–0.67 
(Kappa) 

Reiche et al. 
(2015) 

Detection of tropical 
deforestation 

Viti Levu, Fiji Landsat-7 ETM+* ALOS-1 
PALSAR*  

Break detection For 
Additive Season and 
Trend (BFAST) 

2–3% (OA) 

Sanli et al. (2009)+ Monitoring of land 
use change and its 
environmental 
impacts 

Edremit, Turkey Landsat-5 TM Radarsat-1  ML 6% (OA), 0.05 
(Kappa) 

Sasaki et al. (2012) Land cover and tree 
species classification 

Expo’70 Commemorative 
Park, Suita, Osaka, Japan 

Aerial photos 
(green, red, near- 
infrared)#  

Optech 
ALTM2050 

ML, DT 3–29% (OA), 
0.07–0.39 
(Kappa) 

Shupe and Marsh 
(2004) 

Desert vegetation 
mapping 

Yuma Proving Ground, AZ, 
USA 

Landsat-5 TM ERS-1  ML 15–50% (OA), 
0.16–0.53 
(Kappa) 

Singh et al. (2012) Urban land cover 
assessment 

Mecklenburg County, NC, 
USA 

Landsat-5 TM  Leica ALS50 ML, DT 6–32% (OA) 

Sławik et al. 
(2019) 

Vegetation mapping The lower Biebrza basin, 
Poland 

HySpex (VNIR- 
1800, SWIR-384)*  

Riegl LMS* RF 0.02–0.11 
(Kappa) 

Song et al. (2020) Classification University of Houston 
campus, TX, USA 

Hyperspectral 
imagery#  

LiDAR-derived 
DSM# 

SVM, extreme 
learning machine 
(ELM), DL 

1–5% (OA), 
0.02–0.05 
(Kappa) 

Stramondo et al. 
(2006) 

Earthquake damage 
detection 

Izmit, Turkey and Bam, 
Iran 

IRS-1C*, Terra 
ASTER* 

ERS-1/2*, 
Envisat 
ASAR*  

ML 5–27% (OA), 
0.08–0.35 
(Kappa) 

Sukawattanavijit 
et al. (2017) 

Land cover 
classification 

Central Thailand Landsat-8 OLI, 
THEOS 

Radarsat-2  SVM 7–14% (OA), 
0.16–0.24 
(Kappa) 

Sun et al. (2019) Subtropical crop- 
type mapping 

The lower reaches of the 
Yangzi River, China 

Sentinel-2A/B*, 
Landsat-8 OLI* 

Sentinel-1A 
*  

RF, SVM, NN 0–17% (OA), 
0.01–0.22 
(Kappa) 

Teo and Huang 
(2016) 

Land cover 
classification 

Chiayi and Kaohsiung 
Counties, Taiwan 

WorldView-2, 
CASI-1500  

Optech ALTM 
Pegasus 

Nearest neighbor 6–25% (OA), 
0.02–0.30 
(Kappa) 

Torbick et al. 
(2017) 

Rice monitoring Myanmar Landsat-8 OLI Sentinel-1A 
*, ALOS-2 
PALSAR-2  

DT 0.01–0.24 
(Kappa) 

Töyrä et al. (2001) Wetland flood 
mapping 

Peace-Athabasca Delta, 
Alberta, Canada 

SPOT-4* Radarsat-1*  Mahalanobis 
distance 

0.12–0.17 
(Kappa) 

Voss and 
Sugumaran 
(2008) 

Urban tree species 
classification 

University of Northern 
Iowa campus, IA, USA 

AISA, AISA Eagle  Leica ALS50 Nearest neighbor 9–11% (OA) 

Waske and 
Benediktsson 
(2007) 

Land cover 
classification 

Bonn, Germany SPOT-5, Landsat-5 
TM 

Envisat 
ASAR*, 
ERS-2*  

ML, DT, SVM 0–23% (OA) 

Waske and van der 
Linden (2008) 

Land cover 
classification 

Bonn, Germany Landsat-5 TM Envisat 
ASAR*, 
ERS-2*  

SVM, RF 4–7% (OA) 

Xu et al. (2018a) Classification of 
urban/rural 
landscapes 

University of Houston 
campus, TX, USA and 
Trento, Italy 

Hyperspectral 
imagery#  

LiDAR-derived 
DSM# 

SVM, ELM, DL 1–34% (OA), 
0.02–0.36 
(Kappa) 

Xu et al. (2018b) Land cover 
classification 

Williamson County, IL, 
USA 

Landsat-5 TM*  LiDAR-derived 
occupancy and 
intensity# 

DL 8% (OA), 0.12 
(Kappa) 

Zhang et al. (2014) Urban land cover 
and impervious 
surface mapping 

Pearl River Delta 
(Guangzhou, Shenzhen, 
Hong Kong), China 

Landsat-7 ETM+, 
SPOT-5 

Envisat- 
ASAR, 
TerraSAR-X  

RF 1–3% (OA), 
0.01–0.03 
(Kappa) 

Zhou et al. (2018) Urban land cover 
classification 

Suzhou, Jiangsu Province, 
China 

Landsat-8 OLI, EO- 
1 Hyperion 

Sentinel-1A 
*  

RF 1–6% (OA), 
0.01–0.08 
(Kappa) 

Zhu and Tateishi 
(2006) 

Land cover mapping Zhangwu County, 
Liaoning, China 

Landsat-5 TM* ERS-1*  ML, multisensor 
temporal fusion 

0–50% (OA) 

(continued on next page) 
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recognized as a major data source for mapping land cover distribution. 
Optical, synthetic aperture radar (SAR) and light detection and ranging 
(LiDAR) are three widely adopted remote sensing imaging techniques 
that use different wavelengths, energy sources and mechanisms, and 
data acquired encapsulate different information contents. Specifically, 

optical data provide spectral reflectance measurement of the target 
illuminated by sunlight, whereas LiDAR returns can characterize the 3-D 
structure and radar signals are sensitive to the structural and dielectric 
properties of the target (e.g. roughness and moisture). Although each 
has been proven useful in numerous classification studies, data fusion 

Fig. 1. Growth of classification research over the past two decades based on (a) optical–SAR and optical–LiDAR fusion, and (b) algorithms applied.  

Table 1 (continued ) 

Authors Objective(s) Study site(s) Sensors Classification 
algorithm(s) 

Accuracy 
improved over 
the use of 
single-type data 

Optical SAR LiDAR 

classification 
(MTFC) 

Zhu et al. (2012) Urban and peri- 
urban land cover 
classification 

Eastern Massachusetts, 
USA 

Landsat-7 ETM+* ALOS-1 
PALSAR  

RF 1–22% (OA)  

* Data acquired at multiple time steps. 
# Sensor name not specified. 
+ Studies with land use mapping or change monitoring as the claimed objective. 
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strategies can combine the complementary information contained in 
different types of data and contribute to an improved discriminative 
capability among different land cover classes relative to the use of in-
dividual data types. In the past two decades, synergies of multiple data 
sources for land cover classification have received more and more 
attention, largely because spaceborne optical and SAR data from oper-
ational and archival satellite missions are increasingly available and 
airborne LiDAR technologies continue to become more mature and 
affordable. 

Table 1 provides a detailed review of existing literature that explored 
pixel- or feature-level fusion of multi-source data collected by different 
types of sensors and were published in peer-reviewed journals from 
2000 until Oct 2021. These studies were selected as they aimed at 
mapping land cover (and/or land use) distribution in a wide range of 
environments from urban, desert and coastal zones, to forest, cropland 
and rangeland, and most importantly, they explicitly presented 

classification accuracies from which improvement gained by the fusion 
could be assessed, a major difference compared to existing reviews of 
data fusion that are approach oriented (e.g. Ghassemian, 2016; Ghamisi 
et al., 2019). Among the 75 identified studies, 38 of them examined the 
combined use of optical and spaceborne SAR images, 36 were based on 
integration of optical and airborne LiDAR data, and Hong et al. (2021) 
proposed a multimodal framework and tested it on a hyperspectral- 
LiDAR dataset and a multispectral-SAR dataset. Over 40% of these 
studies were developed based on the use of multitemporal data (denoted 
by a superscript ‘*’) that provide increased information over that from a 
single date. Also, according to Table 1, marginal to substantial increases 
in overall accuracy and Kappa were achieved relative to the use of 
single-type data. A more obvious increasing trend over time can be 
observed for optical-LiDAR fusion studies (Fig. 1a). With the advent of 
big data and in parallel with the rapid computational advances, deep 
learning, a specialized subset of machine learning and a fastest-growing 

Fig. 2. Comparative performance of (a) optical vs. optical–SAR classification, and (b) SAR vs. optical–SAR classification.  

Fig. 3. Comparative performance of (a) optical vs. optical–LiDAR classification, and (b) LiDAR vs. optical–LiDAR classification.  
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trend in data sciences, has gained increasing interest in remote sensing 
image classification (Fig. 1b). 

Regardless of the choice of classification algorithms, more consid-
erable improvements with larger variabilities were always associated 
with pairwise comparisons of SAR vs. optical-SAR classification 
(Fig. 2b), and LiDAR vs. optical-LiDAR classification (Fig. 3b), as 
opposed to optical vs. optical-SAR or optical-LiDAR classification 
(Fig. 2a and 3a). Only in rare cases did the fusion of optical and SAR data 

end up with slightly lower accuracies than those derived from optical 
data alone (shown as points located below the 1:1 line in Fig. 2a). While 
van Beijma et al. (2014) combined a LiDAR-derived digital surface 
model (DSM) with aerial photography and airborne SAR data to delin-
eate salt marsh vegetation habitats in the Loughor Estuary, South Wales, 
UK, and Jahncke et al. (2018) demonstrated the value of incorporating 
QuickBird optical, LiDAR, and Radarsat-2 full polarimetric SAR data for 
improved mapping of a wetland area south of Halifax, Nova Scotia, 

Fig. 4. Image footprints of (a) Landsat (path 15, row 30), (b) PALSAR (path 134, frame 850), and (c) gridded LVIS rh100 over the study area in the CNY region. All 
classification tasks were conducted over the overlapping area of Landsat, PALSAR and LVIS LiDAR footprints. 
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Canada, the synergistic use of all three types of data in classification of 
more general land cover types and how classification accuracy will be 
affected have not been thoroughly evaluated. 

In addition to providing a summary of recent works and associated 
improvements, we present here a case study to investigate further the 
benefits of fusion. Specifically, we aim to address two previously 
unanswered questions: i) can classification accuracy be improved by 
combining the three different types of data with a commonly used 
classifier (random forest), and ii) to what degree the inclusion of sea-
sonal spectral and scattering variations of certain vegetation classes may 
impact the accuracy when optical, SAR, and LiDAR data are used in 
combination. Our particular interest is to assess the improvement in 
classification accuracy attributed to the fusion and the gain of infor-
mation (as opposed to other factors such as the use of different classi-
fiers). To the best of our knowledge, this is the first work that 
simultaneously fuses optical, radar and waveform LiDAR observations, 
where data are acquired from spaceborne or appropriately simulated 
platforms in the LiDAR case. 

The Central New York (CNY) region, which is recognized for its 
persistent cloudiness and precipitation, was chosen as the study area. 
Multitemporal Landsat-5/TM and ALOS-1/PALSAR images acquired 
close to the collection of airborne waveform LiDAR data by NASA’s 
Land, Vegetation, and Ice Sensor (LVIS) were examined. Experiments 
started from the use of single-date features solely derived from one 
specific sensor and gradually shifted to multi-date and multi-sensor 
fusion. Results were analyzed both qualitatively and quantitatively, 
providing a rare glimpse of the variability of classification performance 
due to the use of different features as inputs. This research was built 
upon our earlier work that focused on the integration of multi-type SAR 
features in vegetation and land cover mapping (Jin et al., 2014), and it is 
particularly timely now that a spaceborne LiDAR sensor, the Global 
Ecosystem Dynamics Investigation (GEDI), with similar properties to 
our examined LVIS sensor is currently operational at the International 
Space Station. 

2. Study area and data 

2.1. Study area 

The study area is located in the Central New York (CNY) region, 
mainly in Onondaga County, with a ground extent of approximately 57 
km × 52 km (Fig. 4). While our work was evaluated on a single site, it is 
easily generalizable as the site is sufficiently diverse containing urban 
and suburban environments, strong water, agriculture and different 
forest presence and has strong topographic effects. Topography varies 
substantially in the N-S direction from a fairly level plain of Lake Ontario 
on the north to high hills in the Appalachian Plateau on the south. The 

City of Syracuse is located at the center. It receives significant lake-effect 
snow from Lake Ontario and is considered the snowiest metropolitan 
city in the United States. 

Forests in this region are predominantly second-growth, as intensive 
agricultural activities led to a major disturbance in the 19th century 
(Stanton and Bills, 1996). Various deciduous and evergreen species 
exist, with the ages ranging from 20 to 100 or more years (Zhuang et al., 
2015). Common tree species include American beech (Fagus grandifolia), 
sugar maple (Acer saccharum), white ash (Fraxinus americana), and 
basswood (Tilia americana) as deciduous, and Norway spruce (Picea 
abies), white pine (Pinus strobus), and eastern hemlock (Tsuga cana-
densis) as evergreen (Nyland et al., 1986). Shrubland as early succes-
sional habitats dominated by sparse-to-dense shrubs and intermixed 
with young trees have moderate presence. Agriculture contributes 
significantly to the local economy, as farmlands cover more than 30% of 
total land area in Onondaga County (USDA, 2014). Natural and semi- 
natural herbaceous plants are mostly in the abandoned farmlands. 
Such areas have minimal footprints, and thus are merged with agricul-
tural croplands and pasturelands to form a class named herbaceous/ 
planted. Water, developed and barren lands are also present in the study 
area. Definitions of all land cover classes assessed are consistent with 
those applied to the National Land Cover Database (NLCD) series. 

2.2. Airborne LiDAR data 

LVIS is an airborne, medium footprint, full waveform laser altimeter 
designed, developed and operated by NASA’s Goddard Space Flight 
Center (GSFC) (Blair et al., 1999). LVIS emits laser pulses at 1064-nm 
wavelength with 5-mJ output energy and 10-ns bursts. The digitally 
recorded signals establish a vertical profile of the footprint instanta-
neously illuminated, from which attributes such as surface topography 
and vegetation coverage can be derived. 

The LVIS data of the study area were acquired by 27 horizontal and 
11 vertical flight lines during leaf-on season on August 24–26, 2009. The 
swath width was approximately 2 km and the nominal footprint diam-
eter was 20 m. The footprint density varied spatially due to swath 
overlap between adjacent flight lines. Among the standard LVIS prod-
ucts processed at GSFC, the LVIS Ground Elevation (LGE) data were 
adopted, including geolocation (lat./long.), surface elevation, and 
relative heights to surface at quartile cumulative return energy (Blair 
et al., 2006). These height metrics, derived from a Gaussian decompo-
sition algorithm (Hofton et al., 2000), are referred as rh25, rh50, rh75 
and rh100 and directly depict the vertical profile of canopy structure 
(Sun et al., 2011). 

Table 2 
Summary of the data and features used for classification.  

Sensor Spatial resolution (m) Date Features* Number of 
features 

Landsat-5/ 
TM 

30 2009/4/10 (leaf- 
off) 
2009/5/122009/ 
7/15  
(leaf-on) 
2009/10/19 

Surface reflectance (SR) and 3 × 3 neighborhood variance at bands 1–5, 7, and the 
Normalized Difference Vegetation Index (NDVI). 

52 

ALOS-1/ 
PALSAR 

9.37 (slant range), 3.17–3.20 
(azimuth) 

2010/5/12 
2010/6/272010/ 
8/12  
(leaf-on)2010/ 
11/12  
(leaf-off) 

Features of intensity, polarimetry, interferometry and texture. 132 

LVIS 20 (nominal footprint 
diameter) 

2009/8/ 
24–2009/8/26 

rh25, rh50, rh75, and rh100. 4  

* See Section 3.1 for detailed descriptions of the features extracted from each dataset. 
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2.3. Satellite optical and SAR data 

Optical data were represented by four images acquired by Landsat-5/ 
TM and SAR data were comprised of four images from ALOS-1/PALSAR. 
All image dates were within 1–2 years of the LVIS campaign. Consid-
ering the high stability of the study area, no significant errors were 
introduced by this small temporal variability. Both the spectral and the 
radar datasets included one image in the leaf-on season, one image in the 
leaf-off season, and two images during the transitional period between 
leaf-on and leaf-off conditions (Table 2). 

The selected Landsat scenes at path 15/row 30 (UTM Zone 18 North, 
WGS-84) had minimal cloud and cloud shadow contamination over the 
study area. All were obtained from the USGS Earth Resources Obser-
vation and Science (EROS) Center (source: https://earthexplorer.usgs. 
gov) and processed to Level 1 T through Standard Terrain Correction. 
The six reflective bands (1–5 and 7) at the 30 m spatial resolution were 
extracted to provide spectral information of different land cover types. 

Single look complex (SLC) PALSAR Level 1.1 data in the fine beam 
dual (FBD) polarization (HH and HV) mode were downloaded from the 
Alaska Satellite Facility Distributed Active Archive Center (ASF-DAAC, 
source: https://asf.alaska.edu), all from an off-nadir angle of 34.3 de-
grees in an ascending orbit at path 134/frame 850. Slant range pixel 
spacing is 9.37 m, and azimuth pixel spacing is 3.17–3.20 m. Meteoro-
logical data collected at a weather station in the City of Syracuse showed 
that cumulative precipitation was less than 4 mm within 24 h prior to 
the dates of PALSAR acquisition and there was no snow on the ground at 
the time of PALSAR overpass (Jin et al., 2014). 

3. Methodology 

The procedure implemented for land cover classification can be 
summarized as follows. Multiple features were first derived from the co- 
registered Landsat, PALSAR and LVIS data, respectively (Table 2). A set 
of thematic maps was then produced using the same training sample set 
extracted from high-resolution orthoimagery but different combinations 
of the features as classification inputs. The quality of the maps was 
evaluated on an independent validation sample set in terms of classifi-
cation accuracy. Finally, importance of three feature sets, each corre-
sponding to a specific sensor, was analyzed with respect to individual 
and all land cover types assessed in this study. 

3.1. Feature extraction 

For each Landsat-5/TM scene, digital numbers (DNs) of bands 1–5 
and 7 were converted to surface reflectance (SR) using the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algo-
rithm (Masek et al., 2006), exactly the one that has been applied to 
generate the official Landsat TM and ETM + Level 2 SR products (USGS, 
2020a, 2020b). To avoid the high correlation among the numerous 
indices that have been proposed, a single but frequently used metric was 
extracted from the spatial and spectral domain, respectively. Specif-
ically, variance was computed on each SR band using a 3 × 3 moving 
window to express the spatial correlation (or variability) of neighboring 
pixels, and the Normalized Difference Vegetation Index (NDVI) was 

derived from SR of the near-infrared and red bands as a major indicator 
of the presence, density and health of vegetation (Tucker, 1979). We 
also avoided removing potentially correlated variables to allow the 
classifier to reach its full potential. Therefore, the total number of fea-
tures per scene was 13 comprised of the SR and variance of each of the 
six reflective bands and the NDVI. 

Features extracted from multitemporal ALOS-1/PALSAR data can be 
summarized into four categories, namely intensity, polarimetry, inter-
ferometry and texture. Intensity metrics characterize the strength of the 
radar signals returned and detected by the sensor. Polarimetric param-
eters obtained through decomposition approaches describe the type and 
contribution of different scattering mechanisms (i.e. surface, double 
bounce, and volume scattering). Interferometric coherence quantifies 
the degree of similarity and to which the target area remains unchanged 
at two separate times. Spatial texture measures the spatial pattern of 
ground objects from various aspects (e.g. smoothness, variation, de-
pendency). Detailed descriptions of PALSAR data processing and feature 
extraction are provided in Jin et al. (2014). To facilitate a direct overlay, 
all PALSAR-derived features were co-registered to Landsat scenes using 
a collection of 24 ground control points (GCPs) on screen, and resampled 
to 30 m pixel size through a bilinear interpolation. This is consistent 
with the routine and commonly adopted protocol for image-to-image 
registration, and a total root mean square (RMS) error of less than 0.5 
pixels was achieved. 

Relative height (rh) metrics were retrieved from the LVIS LGE 
product for all flight lines and measured footprints. Point data were 
rasterized and interpolated to 30 m Landsat base images using a 
Delaunay triangulation method embedded in L3Harris’s ENVI software 
package (Boulder, CO, USA) (e.g., Sun et al, 2011; Huang et al., 2013). 
Four images were therefore created, corresponding to rh25, rh50, rh75 
and rh100, respectively. 

3.2. Selection of training and validation samples 

Digital orthoimagery produced at the 0.3 m and 0.6 m resolution 
from aerial photos acquired between 2008 and 2011 was used to extract 
reference data for both training and validation purposes. The sampling 
unit was set to be 30 m by 30 m, consistent with the pixel size of the 
processed Landsat, PALSAR and LVIS data. A total of 1400 pixels were 
manually digitized to constitute the training sample set, including 200 
pixels from each of the seven land cover classes examined in this study 
(Table 3). Because training data need to be representative of the classes 
in the classification scheme, pure pixels were intentionally selected so 
that the unique spectral signature of each class can be captured. The only 
exception was the developed class, where some sample pixels fell within 
residential areas and contained a mixture of vegetation (e.g. trees) and 
constructed materials (e.g. houses). 

A probability sampling design, namely stratified random sampling, 
was employed to determine the location of validation samples. Pre-
liminary analysis of an intermediate classification showed that a certain 
amount of pixels were erroneously labelled as evergreen, shrubland, or 
barren. Therefore, larger sample sizes were allocated to these three 
strata to ensure that each reference (or ground) class would have suffi-
cient sample pixels to yield precise estimates of class-specific accuracy. 
More specifically, a simple random sample of 300 pixels was selected 
from the evergreen stratum, 200 pixels from barren and shrubland, 
respectively, and 100 pixels from each of the remaining four strata (i.e. 
water, developed, deciduous and herbaceous/planted), resulting in a 
total of 1100 pixels in the validation sample set. Each sample pixel was 
overlaid digitally on the orthoimagery. Reference class labels were then 
identified by photointerpretation, including not only a primary label of 
the dominant or most likely land cover class, but also an alternate label 
for those situations where a single class cannot cover the entire pixel or 
be assigned to the pixel with high confidence (Stehman and Czaplewski, 
1998). This labeling protocol provides additional information on vali-
dation data quality for assessing its potential effect on the accuracy 

Table 3 
Training and validation sample sets.  

Class Training Validation: Number of total (mixed) pixels 

Deciduous 200 251 (126) 
Evergreen 200 129 (82) 
Shrubland 200 124 (66) 
Herbaceous/Planted 200 178 (72) 
Water 200 130 (34) 
Developed 200 129 (35) 
Barren 200 159 (13) 
Total 1,400 1,100 (428)  
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estimates (Stehman and Foody, 2009), thus has been applied in various 
studies including all previous NLCD accuracy assessments (e.g. Stehman 
et al., 2003; Wickham et al., 2004, 2010, 2013, 2017, 2021). 

Approximately 40% of the pixels in the validation sample set had an 
alternate class label (Table 3), and most were due to the identification of 
mixed land cover when referring to 0.3 m and 0.6 m resolution aerial 
photos for labeling pixels at the 30 m resolution. 

3.3. Classification 

Random forest (RF), an ensemble learning algorithm (Breiman, 
2001), was employed in this study to assign each pixel to a specific land 
cover type. We opted to use RF classifiers instead of recently developed 
deep learning (DL) methods because: i) our dataset size was small which 
could lead to DL generalization issues, ii) RFs allow a better insight on 
individual feature performance, an important insight for our compari-
son, and iii) tree-based algorithms remain the classification choice for 
large scale mapping (e.g., the NLCD). In classification tasks, RF gener-
ates lots of classification trees, each trained on a bootstrapped sample of 
the original training data and searching across a random subset of the 
input features to determine a split at each node. The output is the ma-
jority vote of the classes predicted by individual unpruned trees. For a 
particular feature, its importance can be measured as the difference 
between classification accuracy of the out-of-bag (OOB) samples before 
and after permuting the values of that feature while leaving the rest 
unchanged. A higher accuracy decrease suggests higher importance of 
that feature. Compared to a single decision tree, RF classifiers largely 
reduce the overfitting problem and are more tolerant to outliers (or 
noise) in the training data (Briem et al., 2002; Chan and Paelinckx, 
2008; Pal and Mather, 2003). 

To explore the role of the features in land cover classification, mul-
tiple RF models were built using the same training sample set but 
different sensor and seasonality combinations. Specifically, nine models 
were developed based on features extracted from individual sensors 
(Table 4), and sixteen and six models by the combined use of two- and 
three-sensor features, respectively (Tables 5 and 6). Each model con-
sisted of 500 classification trees, and one-third of the total number of 
input features were randomly picked at each splitting node. To prevent 
overfitting, the minimum number of samples in a leaf (or terminal) node 
was set to 5. All classifications were performed using the Statistics 
Toolbox in Mathwork’s MATLAB software package (Natick, MA, USA). 
Feature importance was calculated when all of the 188 variables were 
involved, indicating the maximum discriminative capability of the 
datasets used in this study. 

3.4. Accuracy assessment 

The value of a thematic map derived from remotely sensed data 
directly relies on classification accuracy, a commonly accepted measure 
of the correctness of a classification (Foody, 2002). Accuracy assessment 
is therefore an essential step in classification tasks. Because validation 
data were collected following a probability sampling design, the estab-
lishment of statistically rigorous design-based inference for the accuracy 
estimates from a sample to the population can be guaranteed (Stehman, 
2000). In this study, population was defined as pixels where all sensor 
data were available, and agreement was defined as a match between the 
map class and either the primary or alternate reference label to account 
for potential thematic ambiguity of the validation samples (Stehman 
et al. 2003; Wickham et al. 2004, 2010, 2013, 2017, 2021). 

An error matrix was constructed to characterize classification accu-
racy and the performance of each RF model. While statistical tests are 
important, accuracy reporting was approached from the practical 
perspective, that is, examine whether the improvements are sufficiently 
meaningful to warrant the additional acquisition and process of fused 
datasets. The answer to this depends on the application, therefore error 
matrices are presented allowing each reader to come to their own con-
clusions with respect to their particular needs. To accommodate 
different sampling intensities among strata, each sample pixel was 
weighted inversely to its inclusion probability (i.e. the probability of a 

Table 4 
Single-sensor models developed using different images and features.  

Data combination Designation Number of 
images 

Number of 
features 

TM leaf-on (7/15/09) Ton 1 13 
TM leaf-off (4/10/09) Toff 1 13 
TM bitemporal (4/10/09, 7/15/09) T2 2 26 
TM multitemporal (4/10/09, 5/12/ 

09, 7/15/09, 10/19/09) 
T4 4 52 

PALSAR leaf-on (8/12/10) Pon 1 30 
PALSAR leaf-off (11/12/10) Poff 1 30 
PALSAR bitemporal* (8/12/10, 

11/12/10) 
P2 2 62 

PALSAR multitemporal* (5/12/10, 
6/27/10, 8/12/10, 11/12/10) 

P4 4 132 

LVIS Lv 4 4  

* Coherence metrics were included in the feature space for classifications that 
used multi-date PALSAR data. 

Table 5 
Two-sensor models developed using different images and features.  

Data combination Designation Number of 
images 

Number of 
features 

TM leaf-on + PALSAR leaf-on TonPon 2 43 
TM leaf-on + PALSAR leaf-off TonPoff 2 43 
TM leaf-on + PALSAR 

bitemporal 
TonP2 3 75 

TM leaf-on + PALSAR 
multitemporal 

TonP4 5 145 

TM leaf-off + PALSAR leaf-on ToffPon 2 43 
TM leaf-off + PALSAR leaf-off ToffPoff 2 43 
TM leaf-off + PALSAR 

bitemporal 
ToffP2 3 75 

TM leaf-off + PALSAR 
multitemporal 

ToffP4 5 145 

TM bitemporal + PALSAR 
bitemporal 

T2P2 4 88 

TM bitemporal + PALSAR 
multitemporal 

T2P4 6 158 

TM multitemporal + PALSAR 
leaf-on 

T4Pon 5 82 

TM multitemporal + PALSAR 
leaf-off 

T4Poff 5 82 

TM multitemporal + PALSAR 
bitemporal 

T4P2 6 114 

TM multitemporal + PALSAR 
multitemporal 

T4P4 8 184 

TM multitemporal + LVIS T4Lv 8 56 
PALSAR multitemporal + LVIS P4Lv 8 136  

Table 6 
Three-sensor models developed using different images and features.  

Data combination Designation Number of 
images 

Number of 
features 

TM leaf-on + PALSAR leaf-on +
LVIS 

TonPonLv 6 47 

TM leaf-on + PALSAR leaf-off +
LVIS 

TonPoffLv 6 47 

TM leaf-off + PALSAR leaf-on +
LVIS 

ToffPonLv 6 47 

TM leaf-off + PALSAR leaf-off +
LVIS 

ToffPoffLv 6 47 

TM bitemporal + PALSAR 
bitemporal + LVIS 

T2P2Lv 8 92 

TM multitemporal + PALSAR 
multitemporal + LVIS 

T4P4Lv 12 188  
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particular pixel being included in the sample set). Because the seven 
strata used for validation sample selection are based on an intermediate 
classification map and do not exactly correspond to any classification 
scenario examined, cell proportions of the error matrix and the 
accompanying accuracy measures, including overall accuracy and class- 
specific user’s and producer’s accuracies, were estimated following the 
formulas presented in Stehman (2014). Standard errors of the accuracy 
estimates were also computed, quantifying the degree of uncertainty due 
to sampling variation of validation data. Accuracy results were reported 
for each classified map with different features as classification inputs. 

4. Results and discussion 

4.1. Accuracy of classifications derived from different data inputs 

4.1.1. Impact of multi-date fusion on classification accuracy 
Tables 7–9 summarize accuracies of the single-, two-, and three- 

sensor classifications with designated names presented in Tables 4–6, 
respectively. For each table, results are listed in descending order of 
overall accuracy (reported in Fig. 5), and user’s accuracy (UAc) and 
producer’s accuracy (PAc) are presented as deviations from corre-
sponding accuracies of the scenario that has the highest overall accuracy 
to facilitate a more straightforward assessment of the differences among 
classifications. All accuracy estimates are rounded to the nearest whole 
number. Standard errors of the overall accuracy are around 2% in all 
classification scenarios. 

Overall accuracies of single-sensor classifications ranged from 48% 
to 74% (Fig. 5). Among all single-sensor scenarios, the highest overall 
accuracy was achieved through the integration of multitemporal Land-
sat data (T4), and was about 1% higher than the overall accuracy of the 
two-date Landsat classification (T2) and 10% higher than the single-date 
Landsat overall accuracies (Ton or Toff). Similarly, compared to the sin-
gle- and two-date PALSAR classifications, combining multitemporal 
PALSAR data improved overall accuracies by 14–15% and 8–9%, 

Table 7 
Estimated accuracy (%) of classifications derived from single-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from cor-
responding accuracies of the T4 scenario (top row, bold) with positives showing increases and negatives showing decreases.  

Scenarios Deciduous  Evergreen  Shrubland  Herbaceous/Planted  Water  Developed  Barren 

PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc 

T4 63 97  95 60  91 33  70 95  86 100  84 77  45 9 
T2 –2 1  0 12  –1 1  2 –11  –6 0  –2 –1  13 5 
Toff –22 –8  –17 21  –5 –10  1 –8  –4 –1  –11 –3  51 1 
Ton –6 –3  –4 –14  –3 1  –24 –13  –16 0  –5 –3  50 4 
P4 –8 –5  –7 –22  –13 –6  2 –3  –8 –9  –32 1  48 –5 
Lv –12 –1  –10 –39  –56 13  –18 –4  –23 –48  –11 –21  2 –2 
P2 –9 –5  –6 –30  –26 –11  –8 –5  –11 –30  –37 –2  40 –6 
Pon –21 –13  –11 –33  –35 –15  –19 –7  –14 –34  –39 –15  –5 –7 
Poff –21 –10  –11 –35  –32 –13  –23 –8  –17 –33  –40 –16  42 –5  

Table 8 
Estimated accuracy (%) of classifications derived from two-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from corre-
sponding accuracies of the T4Lv scenario (top row, bold) with positives showing increases and negatives showing decreases.  

Scenarios  Deciduous  Evergreen  Shrubland  Herbaceous/Planted  Water  Developed  Barren 

PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc 

T4Lv  87 96  99 52  89 54  68 97  79 100  86 76  61 18 
T4P4  –22 1  –4 10  4 –21  6 1  7 0  –2 2  –15 –4 
T4P2  –22 1  –3 10  2 –20  8 –3  6 0  –3 2  –16 –6 
T4Poff  –20 1  –5 9  2 –18  4 –2  6 0  –2 1  –16 –8 
T4Pon  –21 1  –4 8  2 –19  3 –4  6 0  –3 1  –15 –8 
T2P4  –23 1  –6 21  2 –22  9 –2  3 0  –6 2  37 –8 
T2P2  –24 0  –4 20  2 –20  9 –6  1 0  –4 2  –16 –9 
ToffP4  –32 0  –21 35  0 –28  10 –5  3 –1  –10 9  35 –13 
TonP4  –28 0  –8 –3  1 –22  –2 3  –9 0  –5 1  –13 –7 
ToffP2  –36 –1  –19 37  –2 –30  10 –6  3 –1  –5 8  37 –7 
TonP2  –30 –1  –9 –4  1 –24  –11 1  –5 0  –7 –5  –13 –10 
TonPoff  –30 0  –8 –6  1 –23  –13 0  –10 0  –6 –3  38 0 
TonPon  –29 1  –8 –6  1 –24  –10 –2  –11 0  –8 –6  –13 –9 
ToffPoff  –38 0  –20 29  –1 –29  –1 –7  3 –1  –7 –3  37 –9 
ToffPon  –44 –4  –19 36  –5 –32  7 –7  3 –1  –10 2  37 –8 
P4Lv  –35 3  –6 –30  –43 –7  –2 –3  –10 0  –13 –12  30 –14  

Table 9 
Estimated accuracy (%) of classifications derived from three-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from cor-
responding accuracies of the T4P4Lv scenario (top row, bold) with positives showing increases and negatives showing decreases.  

Scenarios  Deciduous  Evergreen  Shrubland  Herbaceous/Planted  Water  Developed  Barren 

PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc 

T4P4Lv  87 96  99 54  91 61  72 99  88 100  87 77  48 14 
T2P2Lv  –1 1  –1 5  0 –4  –5 –1  –5 0  0 –1  52 –5 
ToffPonLv  –5 2  –5 5  –31 9  –1 –5  –5 –1  –9 –17  50 –1 
ToffPoffLv  –5 2  –4 7  –32 10  –4 –6  –6 –1  –9 –16  50 –4 
TonPonLv  –5 2  –5 –20  –9 –7  –11 –4  –18 0  –6 –3  51 6 
TonPoffLv  –4 2  –4 –22  –20 –4  –14 –5  –18 0  –8 –4  50 2  
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respectively. The choice of sensor also had considerable impact on 
overall accuracy. Classifications of Landsat data resulted in overall ac-
curacies of 64–74%, consistently higher than overall accuracies of 
PALSAR (48–63%) and LVIS (58%) classifications. More substantial 
differences in accuracy were associated with certain classes (Table 7). 
For example, producer’s accuracies of shrubland and developed and 
user’s accuracies of evergreen and water varied by 40–56% with regard 
to the use of different sensor data. 

Moving to the two-sensor classifications (Fig. 5, Table 8), a 17% 
difference in overall accuracy was observed among the numerous 
combinations. Starting with the lowest performer, multi-date PALSAR 
combined with LVIS data (P4Lv) was able to classify different land cover 
types to 64%, an overall accuracy inferior to all other two-sensor sce-
narios. Using single-date Landsat and PALSAR data resulted in classifi-
cations with a nearly identical overall accuracy of 67%. Including all 
PALSAR observations increased overall accuracy to 71% (ToffP4 and 
TonP4), which was further improved to 76% by incorporating multi-date 
Landsat observations also (T4P4). The most accurate two-sensor classi-
fication was generated with the joint use of LVIS and multitemporal 
Landsat data as classification inputs (T4Lv), and an overall accuracy of 
81% was achieved. Compared to T4P4, substantial improvement was 
associated with the deciduous and shrubland classes, as producer’s ac-
curacy of deciduous and user’s accuracy of shrubland were increased by 
more than 20%. It should be noted that although the exclusive use of 
PALSAR (P4) led to a 5% higher overall accuracy than was obtained by 
using LVIS alone (Lv) (63% vs. 58%, Table 7), greater improvement was 
gained when combining multitemporal Landsat images with LVIS data 
as opposed to PALSAR, suggesting that LVIS contributed more useful 
thematic information that are complementary to Landsat data and 

beneficial to the classification task. 
Performance of three-sensor classifications was relatively close 

compared to that of single- and two-sensor scenarios with overall ac-
curacy varying from 74% to 83% (Fig. 5, Table 9). Similar overall ac-
curacies of 74–77% were attained with the fusion of single-date Landsat, 
PALSAR and LVIS data. Nonetheless, replacing the leaf-on with the leaf- 
off Landsat scene gave rise to a nearly 30% increase in user’s accuracy of 
evergreen and a 10% increase in producer’s accuracy of herbaceous/ 
planted (TonPoffLv vs. ToffPoffLv, TonPonLv vs. ToffPonLv). The integration 
of Landsat and PALSAR leaf-on and leaf-off pairs with LVIS data 
increased overall accuracy to 82% (T2P2Lv). Another 1% improvement 
was achieved by the further addition of Landsat and PALSAR images 
acquired during the transitional period (T4P4Lv), leading to the highest 
overall accuracy of 83%. Specifically, producer’s accuracies of shrub-
land and developed were considerably improved to 91% and 87% when 
fusing two- or multi-date Landsat and PALSAR with LVIS data, whereas 
user’s accuracies of deciduous and water were consistently higher than 
96% for all three-sensor scenarios. 

To examine the impact of including alternate labels for validation, 
accuracies of all classification scenarios were also calculated following a 
more strict agreement defined as a match between the map class and the 
primary label only (see Appendix A). Overall accuracies reported in 
Fig. A.1 are 6–9% lower compared to those present in Fig. 5. This is 
consistent with the general expectation considering the fact that the 
existence of mixed pixels was ignored and no allowance was permitted 
for any thematic ambiguity in the reference class labels. However, the 
relative performance of the different combinations of sensor types and 
dates remains fundamentally the same, although the absolute values of 
increase or decrease may be different (Table A.1). 

Fig. 5. Overall accuracy of all classifications performed in this study. A descending order is applied to the single-, two- and three-sensor scenarios, respectively. 
Columns filled with upward diagonals correspond to the scenarios presented in Table 10. 

Table 10 
Estimated accuracy (%) of classifications developed using combinations of different sensor data. Producer’s and user’s accuracies (PAc and UAc) are presented as 
deviations from corresponding accuracies of the T4P4Lv scenario (top row, bold) with positives showing increases and negatives showing decreases.  

Scenarios  Deciduous  Evergreen  Shrubland  Herbaceous/Planted  Water  Developed  Barren 

PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc 

T4P4Lv  87 96  99 54  91 61  72 99  88 100  87 77  48 14 
T4Lv  0 0  0 –2  –2 –7  –4 –2  –8 0  –2 0  13 4 
T4P4  –23 1  –4 8  2 –28  2 –1  –1 0  –4 1  –3 1 
T4  –25 1  –4 6  1 –28  –2 –3  –2 0  –4 0  –3 –5 
P4Lv  –35 3  –6 –32  –45 –14  –6 –5  –18 0  –15 –13  43 –9 
P4  –32 –4  –11 –15  –12 –34  0 –6  –10 –9  –35 1  45 –10 
Lv  –37 0  –14 –33  –55 –15  –20 –8  –25 –48  –14 –20  –1 –7  
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Fig. 6. Land cover maps created using different sensor combinations (a)-(g), and by manually assigning each 30 m pixel a reference class (h) based on the 0.6 m 
resolution orthoimagery (i). Pixels containing no LVIS LiDAR footprints (displayed in white, (a)-(g)) were excluded from classification and accuracy assessment. 

Table 11 
Error matrix and associated accuracy estimates (%) of the classification using multitemporal Landsat and PALSAR data as inputs (T4P4). Overall accuracy is 76% with a 
standard error (SE) of 2%.  

Class Water Developed Barren Deciduous Evergreen Shrubland Herbaceous/Planted Total UAc (SE) 

Water 3.734 0.000 0.000 0.000 0.000 0.000 0.000 3.734 100 (0) 
Developed 0.053 21.361 0.372 1.292 0.000 0.036 4.249 27.363 78 (4) 
Barren 0.000 1.064 0.308 0.000 0.000 0.002 0.778 2.153 14 (5) 
Deciduous 0.043 0.311 0.000 19.362 0.100 0.201 0.036 20.052 97 (1) 
Evergreen 0.387 0.418 0.000 0.998 3.230 0.093 0.107 5.234 62 (7) 
Shrubland 0.107 2.381 0.000 8.002 0.057 6.374 2.431 19.353 33 (4) 
Herbaceous/Planted 0.000 0.036 0.000 0.275 0.000 0.179 21.622 22.111 98 (1) 
Total 4.324 25.572 0.680 29.929 3.387 6.884 29.224 100  
PAc (SE) 86 (3) 84 (4) 45 (22) 65 (4) 95 (2) 93 (2)  11 4)    
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4.1.2. Impact of multi-sensor fusion on classification accuracy 
Accuracies derived from combinations of different types of features 

associated with one, two or three sensors were summarized in Table 10 
(also see the columns filled with upward diagonals in Fig. 5). Fusing 
LVIS with multitemporal PALSAR data (P4Lv) increased overall accuracy 
by 6% and 1%, compared to the use of each dataset individually. The 
integration of Landsat with PALSAR (T4P4) and Landsat with LVIS (T4Lv) 
contributed to more substantial improvement in classification perfor-
mance over single-sensor classifications. For example, an increase of 
13% and 23% in overall accuracy was respectively attained due to the 
addition of Landsat data relative to using PALSAR or LVIS alone (T4P4 
vs. P4, T4Lv vs. Lv). As expected, combining the features derived from all 
three sensors led to the highest overall accuracy of 83% (T4P4Lv), 2–19% 
superior to the two-sensor scenarios. The slight improvement of 2% over 
T4Lv implies that the benefits of introducing SAR features to Landsat and 
LVIS were limited for classifying the land cover types present at the 
study site. It should be noted that when Landsat data were available, the 
inclusion of LVIS data was capable of improving overall accuracy by 7% 

(T4Lv vs. T4, T4P4Lv vs. T4P4), a larger extent over the 1% improvement 
obtained by adding LVIS to PALSAR only (P4Lv vs. P4). This indicates 
that LVIS-derived height metrics can be more successful in discrimi-
nating different land cover types with the combined use of Landsat data. 
Differences in class-specific accuracies were more noticeable for certain 
vegetation-related classes like deciduous, evergreen and shrubland, as 
well as the developed class that was defined as a mixture of constructed 
materials (i.e. impervious surface) and vegetation planted for recrea-
tion, erosion control and aesthetic purposes. 

The corresponding classified maps were also evaluated qualitatively. 
Although an intensive inspection at multiple locations was conducted, 
classifications over a small area consisting of 85 by 75 30-m pixels were 
presented in Fig. 6 to facilitate a clearer interpretation. A reference land 
cover classification, as Fig. 6h shows, was generated by visually iden-
tifying the dominant class of every 30 m pixel based on the orthoimagery 
at the 0.6 m resolution over the selected area (Fig. 6i). Substantial dif-
ferences can be observed when comparing Fig. 6g, the resultant map of 
T4P4Lv classification, to the other six maps derived from single- and two- 

Table 12 
Error matrix and associated accuracy estimates (%) of the classification combining LVIS with multitemporal Landsat and PALSAR data as inputs (T4P4Lv). Overall 
accuracy is 83% with a standard error (SE) of 2%.  

Class Water Developed Barren Deciduous Evergreen Shrubland Herbaceous/Planted Total UAc (SE) 

Water 3.734 0.000 0.000 0.000 0.000 0.000 0.000 3.734 100 (0) 
Developed 0.021 21.810 0.336 1.292 0.000 0.036 4.985 28.481 77 (4) 
Barren 0.000 1.064 0.308 0.332 0.000 0.002 0.556 2.263 14 (5) 
Deciduous 0.021 0.729 0.000 27.768 0.000 0.468 0.021 29.007 96 (2) 
Evergreen 0.468 0.693 0.000 1.579 3.406 0.043 0.107 6.297 54 (6) 
Shrubland 0.021 0.439 0.000 0.826 0.036 5.645 2.345 9.313 61 (6) 
Herbaceous/Planted 0.000 0.222 0.000 0.000 0.000 0.036 20.648 20.906 99 (1) 
Total 4.266 24.958 0.644 31.797 3.442 6.230 28.663 100  
PAc (SE) 88 (3) 87 (4) 48 (25) 87 (2) 99 (1) 91 (5) 72 (4)    

Fig. 7. Histograms of the four vegetation types in the LVIS-derived height metrics: (a) rh25, (b) rh50, (c) rh75, and (d) rh100.  
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sensor classifications (Fig. 6a-f), and Fig. 6g appears more consistent 
with the real land cover patterns as displayed in Fig. 6h and i. Specif-
ically, in Fig. 6g, the confusion between deciduous and shrubland in 
Fig. 6a and d was considerably reduced, and only a small number of 
pixels were classified as barren, as opposed to Fig. 6b and f, where large 
barren patches were erroneously created. Besides, lower spatial het-
erogeneity was achieved in Fig. 6g compared to Fig. 6c and e, and ar-
tifacts and isolated pixels that are most likely to be noise were largely 
removed. Despite the overall consistency, the comparison of Fig. 6g and 
h also reveals that certain misclassification occurred between the her-
baceous/planted and developed classes. This may be largely due to the 
difficulties in separating natural and semi-natural herbaceous and 
planted areas (e.g. croplands) from grass-covered ground in the devel-
oped context (e.g. residential backyards and golf courses). Nonetheless, 
this assessment still proved that the model developed using Landsat, 
PALSAR and LVIS data concurrently can generate a visually more reli-
able land cover classification over multiple land cover types with 
varying extents of ground coverage. 

4.2. Added value of LiDAR observations in characterizing vegetation 

To further evaluate the contribution of LVIS in improving class- 
specific accuracies, a comparison was conducted between the two 
classifications before and after LVIS data were fused with multitemporal 
Landsat and PALSAR images as inputs (T4P4 vs. T4P4Lv). Tables 11 and 
12 show the error matrix of the two classified maps created over the 
entire study area, respectively. The rows represent remote sensing- 
derived classification and the columns correspond to ground refer-
ence. Cell entries are expressed as proportion of area. The diagonal cells 
summarize correctly classified areas (displayed in bold), and all off- 
diagonal cells indicate errors. 

Disagreement was largely associated with the deciduous and 
shrubland classes in the T4P4 classification, as displayed in a light gray 
color in Table 11. Substantial deciduous pixels were misclassified as 
shrubland, resulting in remarkably high omission error of deciduous and 
high commission error of shrubland. This is mainly attributed to the 
similarities of the two vegetation classes in their spectral, scattering and 
temporal signatures. In contrast, vertical structural features extracted 
from LiDAR waveforms played a crucial role in distinguishing shrubland 
from deciduous forest. As shown in Table 12, including LVIS relative 
height (rh) metrics largely resolved the problem, and predominantly 
contributed to the 28% increase in user’s accuracy of shrubland and the 
23% increase in producer’s accuracy of deciduous. Specifically, signa-
tures of the deciduous, evergreen, shrubland, and herbaceous/planted 
classes were explored with respect to each rh metric based on the 
reference data (Fig. 7). It is clear to see that the separability of shrubland 
and deciduous was high, especially in rh75 and rh100. Also, Fig. 7d 
coincides with the commonly adopted definition of shrubland as areas of 
shrubs and young trees less than 5 m tall, whereas deciduous/evergreen 
forest referring to areas dominated by trees that are generally greater 
than 5 m tall. The fact that deciduous overlaps with evergreen to a large 
degree in all of the four rh metrics caused the two classes hard to 
separate, a major limitation of using LVIS alone. This could largely be 
compensated by the integration of multitemporal Landsat data due to 
additional information on seasonal changes they brought in (Table 10). 

Among the seven land cover types, barren was always the least well 
characterized with the lowest producers’ and user’s accuracies. Ac-
cording to Tables 11 and 12, omission error of the barren class is 
attributed to the fact that more than 50% of barren pixels were labeled 
as developed. Meanwhile, the majority of pixels classified as barren were 
actually developed or herbaceous/planted on the ground, giving rise to 
its markedly high commission error. Nonetheless, its impact on the 
overall quality of the resultant classified maps is considered marginal, 
since barren is a rare class that represents only 2% of the study area from 
the map perspective. 

4.3. Importance of sensor type to individual classes 

To examine the relevant importance of spectral, scattering and ver-
tical structural features in land cover classification, an assessment was 
implemented on the classifier that combined all of the 188 variables 
extracted from Landsat, PALSAR and LVIS data as classification inputs 
(T4P4Lv). The variables were grouped into three feature sets, each cor-
responding to a specific sensor and sensor type. Importance was 
measured as the mean decrease in accuracy as a result of the OOB 
samples being misclassified providing that the four most important 
features in the feature set evaluated was absent (Fig. 8, also see Fig. B.1 
and Table B.1 in Appendix B for the importance of individual features). 

Compared to PALSAR and LVIS, the Landsat feature set was of 
greater importance to the overall accuracy. Both Landsat and LVIS 
contributed considerably more than the numerous PALSAR-derived 
features, since randomly permuting values of those features yielded a 
slightly decreased overall accuracy by less than 1%. LVIS was the most 
indispensable feature set for three out of the four vegetation classes 
assessed in this study: deciduous, shrubland and herbaceous/planted. 
The critical role that multitemporal Landsat data played in mapping 
evergreen, as discussed in Section 4.2, was confirmed by the fact that 
when Landsat features were removed, the chance an evergreen pixel 

Fig. 8. Averaged feature importance for each land cover class and over 
all classes. 
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labeled as any other class increased by 14%. The integration of the 
PALSAR feature set was more beneficial to shrubland and herbaceous/ 
planted over the other classes. 

5. Conclusions 

This study illustrates that integration of spaceborne optical (Landsat- 
5/TM) and SAR (ALOS-1/PALSAR) and airborne full-waveform LiDAR 
(LVIS) data provides the most pronounced discriminative power among 
different land cover types. An overall accuracy of 83% was achieved 
when all spectral, scattering and vertical structural features were used as 
classification inputs, 2–19% and 9–25% higher than the numerous two- 
sensor and single-sensor scenarios assessed, respectively. The inclusion 
of seasonal spectral and scattering variations of vegetation classes also 
improved overall accuracy by nearly 10%, when observations from all 
three sensors were used in combination. Compared to PALSAR features, 
LVIS-derived canopy height metrics contributed more useful thematic 
information that is complementary to Landsat data and beneficial to 
classification performance, especially for vegetation classes. As more 
applications and studies of spaceborne GEDI LiDAR emerge, this study 
serves as a guide regarding to what extent accuracy of classification 
maps may be improved through the fusion of multi-date and multi-type 
remotely sensed data with a commonly used classifier of random forest. 
Future work will be focused on extending our current proof-of-concept 

work to additional sites, sensors and time periods with the use of 
other machine learning as well as advanced deep learning algorithms 
that have gained a lot of interest recently to ensure more generalized and 
statistically representative conclusions. 
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Appendix A 

See Table A1 and Fig. A1. 

Table A1 
Producer’s and user’s accuracies (%) of classifications derived from single-, two- and three-sensor models, where agreement is defined as a match between the map 
class and the primary reference label only for the validation samples. The table is formatted to be consistent with Tables 7–9 in the text.  

Scenarios  Deciduous  Evergreen  Shrubland  Herbaceous/Planted  Water  Developed  Barren 

PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc  PAc UAc 

(a) Single-sensor classifications 
T4  57 91  66 44  80 23  65 93  85 100  81 68  45 9 
T2  0 1  4 6  − 1 2  2 − 11  − 6 0  − 3 1  − 1 − 1 
Toff  − 21 − 8  − 3 8  − 10 − 8  3 − 8  − 6 − 10  − 13 − 1  − 3 − 3 
Ton  − 8 − 5  − 7 − 20  − 4 − 5  − 24 − 14  − 18 0  − 8 − 2  49 1 
P4  − 10 − 12  − 11 − 25  − 28 − 10  0 − 5  − 13 − 17  –33 3  2 − 5 
Lv  − 14 − 4  − 12 –33  − 57 1  − 16 − 8  − 25 − 49  − 14 − 18  − 28 − 7 
P2  − 10 − 7  − 6 − 25  − 40 − 12  − 8 − 8  − 16 − 37  − 38 − 1  − 3 − 6 
Pon  − 20 − 16  − 12 − 27  − 45 − 14  − 18 − 11  − 15 − 34  − 41 − 14  − 6 − 7 
Poff  − 21 − 16  − 18 − 31  − 42 − 13  –23 − 11  − 21 − 41  − 41 − 13  − 8 − 7 
(b) Two-sensor classifications 
T4Lv  87 96  99 52  89 54  68 97  79 100  86 76  61 18 
T4P4  − 30 − 5  − 34 − 7  − 9 − 31  1 − 2  6 0  − 6 − 6  − 16 − 4 
T4P2  − 29 − 5  –33 − 7  − 11 − 30  2 − 5  6 0  − 6 − 6  − 16 − 6 
T4Poff  − 27 − 5  − 36 − 8  − 9 − 28  − 2 − 5  6 0  − 5 − 8  − 16 − 8 
T4Pon  − 27 − 5  − 34 − 5  − 10 − 29  − 2 − 6  6 0  − 6 − 8  − 16 − 8 
T2P4  –23 1  − 6 21  2 –22  9 − 2  3 0  − 6 2  37 − 8 
T2P2  − 29 − 6  − 31 − 1  − 11 − 29  3 − 8  0 0  − 8 − 5  − 16 − 9 
ToffP4  –32 0  − 21 35  0 − 28  10 − 5  3 − 1  − 10 9  35 − 13 
ToffP2  − 36 − 1  − 19 37  − 2 − 30  10 − 6  3 − 1  − 5 8  37 − 7 
TonP4  − 36 − 7  − 40 − 24  − 11 − 35  − 9 − 1  − 11 0  − 10 − 8  − 16 − 7 
ToffPoff  − 42 − 6  − 35 0  − 16 − 36  − 6 − 9  0 − 10  − 12 − 8  − 18 − 13 
ToffPon  − 48 − 13  –33 6  − 20 − 39  2 − 9  0 − 10  − 15 − 3  − 18 − 12 
TonP2  − 30 − 1  − 9 − 4  1 − 24  − 11 1  − 5 0  − 7 − 5  − 13 − 10 
TonPoff  − 38 − 8  − 40 − 25  − 10 − 35  − 19 − 2  − 12 0  − 12 − 12  32 − 5 
TonPon  − 38 − 6  − 39 − 26  − 15 − 35  − 17 − 8  − 12 0  − 13 − 15  − 16 − 9 
P4Lv  − 35 3  − 6 − 30  − 43 − 7  − 2 − 3  − 10 0  − 13 − 12  30 − 14 
(c) Three-sensor classifications 
T4P4Lv  87 96  99 54  91 61  72 99  88 100  87 77  48 14 
T2P2Lv  − 1 1  − 1 5  0 − 4  − 5 − 1  − 5 0  0 − 1  52 − 5 
ToffPonLv  − 5 2  − 5 5  − 31 9  − 1 − 5  − 5 − 1  − 9 − 17  50 − 1 
ToffPoffLv  − 5 2  − 4 7  –32 10  − 4 − 6  − 6 − 1  − 9 − 16  50 − 4 
TonPonLv  − 5 2  − 5 − 20  − 9 − 7  − 11 − 4  − 18 0  − 6 − 3  51 6 
TonPoffLv  − 4 2  − 4 –22  − 20 − 4  − 14 − 5  − 18 0  − 8 − 4  50 2  
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Appendix B 

See Fig. B1 and Table B1. 

Fig. A1. Overall accuracy of single-, two- and three-sensor classifications, where agreement is defined as a match between the map class and the primary reference 
label only for the validation samples. The figure is formatted to be consistent with Fig. 5 in the text. 

Fig. B1. Importance of all features extracted from (a) Landsat, (b) PALSAR, and (c) LVIS data. Note that subplots (a) and (c) are combined due to the similar scale 
of 0–10%. 
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Table B1 
Importance of all Landsat, PALSAR, and LVIS features used for classification (expressed in percent). Shading is applied to the four most important features of each 
dataset that are labeled in Fig. B.1.  

(a) Landsat (52) (b) PALSAR* (132) 

4/10 7/15 Intensity Interferometry (γ) Texture (8/12, 
w3) 

Texture (5/12, 
w3) 

Texture (6/27, 
w3) 

Texture (11/12, 
w3) 

SR (b1) 0.49 SR (b1) 1.91 HH (8/12) 0.10 γ_HH 

(8/12 vs. 11/12) 
0.16 HOM_HH 0.02 HOM_HH 0.01 HOM_HH 0.02 HOM_HH 0.01 

SR (b2) 1.85 SR (b2) 1.16 HH (5/12) 0.24 CON_HH 0.03 CON_HH 0.02 CON_HH 0.02 CON_HH 0.02 
SR (b3) 1.56 SR (b3) 5.54 HH (6/27) 0.09 γ_HH 

(6/27 vs. 8/12) 
0.18 DIS_HH 0.02 DIS_HH 0.01 DIS_HH 0.02 DIS_HH 0.01 

SR (b4) 5.41 SR (b4) 2.65 HH (11/12) 0.17 ENT_HH 0.01 ENT_HH 0.02 ENT_HH 0.01 ENT_HH 0.00 
SR (b5) 5.40 SR (b5) 3.56 HV (8/12) 0.14 γ_HH 

(5/12 vs. 8/12) 
0.48 ENE_HH 0.00 ENE_HH 0.01 ENE_HH 0.00 ENE_HH 0.01 

SR (b7) 8.16 SR (b7) 5.27 HV (5/12) 1.02 COR_HH 0.01 COR_HH 0.03 COR_HH 0.02 COR_HH 0.02 
Var (b1) 0.09 Var (b1) 1.12 HV (6/27) 0.49 γ_HH 

(5/12 vs. 11/12) 
0.33 HOM_HV 0.01 HOM_HV 0.00 HOM_HV 0.01 HOM_HV 0.04 

Var (b2) 0.03 Var (b2) 0.15 HV (11/12) 0.32 CON_HV 0.01 CON_HV 0.00 CON_HV 0.03 CON_HV 0.01 
Var (b3) 0.03 Var (b3) 0.22 HH–HV (8/12) 0.03 γ_HH 

(5/12 vs. 6/27) 
0.35 DIS_HV 0.01 DIS_HV 0.01 DIS_HV 0.01 DIS_HV 0.02 

Var (b4) 0.58 Var (b4) 0.64 HH–HV (5/12) 0.04 ENT_HV 0.00 ENT_HV 0.00 ENT_HV 0.01 ENT_HV 0.09 
Var (b5) 0.04 Var (b5) 0.53 HH–HV (6/27) 0.06 γ_HH 

(6/27 vs. 11/12) 
0.12 ENE_HV 0.00 ENE_HV 0.01 ENE_HV 0.01 ENE_HV 0.05 

Var (b7) 0.08 Var (b7) 0.80 HH–HV (11/12) 0.07 COR_HV 0.01 COR_HV 0.03 COR_HV 0.03 COR_HV 0.11 
NDVI 6.14 NDVI 3.77 HH/HV (8/12) 0.04 γ_HV 

(8/12 vs. 11/12) 
0.13 Texture (8/12, 

w15) 
Texture (5/12, 
w15) 

Texture (6/27, 
w15) 

Texture (11/12, 
w15) 

5/12 10/19 HH/HV (5/12) 0.02 HOM_HH 0.09 HOM_HH 0.07 HOM_HH 0.05 HOM_HH 0.06 
SR (b1) 2.16 SR (b1) 1.25 HH/HV (6/27) 0.03 γ_HV 

(6/27 vs. 8/12) 
0.15 CON_HH 0.04 CON_HH 0.12 CON_HH 0.02 CON_HH 0.06 

SR (b2) 0.98 SR (b2) 3.89 HH/HV (11/12) 0.02 DIS_HH 0.04 DIS_HH 0.07 DIS_HH 0.03 DIS_HH 0.07 
SR (b3) 1.07 SR (b3) 0.46 Polarimetry (H, α) γ_HV 

(5/12 vs. 8/12) 
0.17 ENT_HH 0.02 ENT_HH 0.01 ENT_HH 0.03 ENT_HH 0.04 

SR (b4) 2.90 SR (b4) 2.70 α (8/12) 0.13 ENE_HH 0.02 ENE_HH 0.01 ENE_HH 0.03 ENE_HH 0.04 
SR (b5) 6.11 SR (b5) 4.46 H (8/12) 0.08 γ_HV 

(5/12 vs. 11/12) 
0.51 COR_HH 0.03 COR_HH 0.03 COR_HH 0.02 COR_HH 0.01 

SR (b7) 7.44 SR (b7) 0.70 α (5/12) 0.07 HOM_HV 0.17 HOM_HV 0.04 HOM_HV 0.09 HOM_HV 0.05 
Var (b1) 0.11 Var (b1) 0.23 H (5/12) 0.15 γ_HV 

(5/12 vs. 6/27) 
0.42 CON_HV 0.05 CON_HV 0.01 CON_HV 0.00 CON_HV 0.03 

Var (b2) 0.07 Var (b2) 0.15 α (6/27) 0.08 DIS_HV 0.08 DIS_HV 0.01 DIS_HV 0.01 DIS_HV 0.03 
Var (b3) 0.05 Var (b3) 0.04 H (6/27) 0.06 γ_HV 

(6/27 vs. 11/12) 
0.06 ENT_HV 0.05 ENT_HV 0.03 ENT_HV 0.11 ENT_HV 0.01 

Var (b4) 0.78 Var (b4) 0.33 α (11/12) 0.04 ENE_HV 0.06 ENE_HV 0.03 ENE_HV 0.10 ENE_HV 0.04 
Var (b5) 0.20 Var (b5) 0.34 H (11/12) 0.02   COR_HV 0.14 COR_HV 0.03 COR_HV 0.04 COR_HV 0.02 
Var (b7) 0.60 Var (b7) 0.15             
NDVI 1.08 NDVI 1.58             
(c) LVIS (4)  
rh25 2.80 rh50 6.72 rh75 5.96 rh100 6.79          

* For a full description of the numerous PALSAR features and how they are calculated the reader is referred to Jin et al. (2014). 

H. Jin and G. Mountrakis                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0924-2716(22)00075-2/h0005
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0005
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0005
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0010
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0010
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0010
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0015
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0015
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0015
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0020
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0020
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0025
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0025
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0025
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0035
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0035
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0055
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0060
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0060
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0060
https://doi.org/10.1016/j.jag.2020.102164
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0070
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0070
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0070
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0080
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0080
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0080
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0080
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0090
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0090
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0100
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0100
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0100
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0105
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0105
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0105
https://doi.org/10.1109/TGRS.2020.3047130
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0130
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0130
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0140
http://refhub.elsevier.com/S0924-2716(22)00075-2/h0140


ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 171–190

189

vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Ind. 73, 
105–117. 

Furtado, L.F.d.A., Silva, T.S.F., Fernandes, P.J.F., Novo, E.M.L.d.M., 2015. Land cover 
classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi- 
sensor and image fusion techniques. Acta Amazon. 45 (2), 195–202. 

Geerling, G.W., Labrador-Garcia, M., Clevers, J.G.P.W., Ragas, A.M.J., Smits, A.J.M., 
2007. Classification of floodplain vegetation by data fusion of spectral (CASI) and 
LiDAR data. Int. J. Remote Sens. 28 (19), 4263–4284. 

Ghamisi, P., Hofle, B., Zhu, X.X., 2017. Hyperspectral and LiDAR data fusion using 
extinction profiles and deep convolutional neural network. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens. 10 (6), 3011–3024. 

Ghamisi, P., Gloaguen, R., Atkinson, P.M., Benediktsson, J.A., Rasti, B., Yokoya, N., 
Wang, Q., Hofle, B., Bruzzone, L., Bovolo, F., Chi, M., Anders, K., 2019. Multisource 
and multitemporal data fusion in remote sensing: A comprehensive review of the 
state of the art. IEEE Geosci. Remote Sens. Mag. 7 (1), 6–39. 

Ghassemian, H., 2016. A review of remote sensing image fusion methods. Information 
Fusion 32, 75–89. 

Guo, L.i., Chehata, N., Mallet, C., Boukir, S., 2011. Relevance of airborne lidar and 
multispectral image data for urban scene classification using Random Forests. ISPRS 
J. Photogramm. Remote Sens. 66 (1), 56–66. 

Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., Carron, J., 2019. Urban tree species 
classification using a WorldView-2/3 and LiDAR data fusion approach and deep 
learning. Sensors 19 (6), 1284. 

Hasani, H., Samadzadegan, F., Reinartz, P., 2017. A metaheuristic feature-level fusion 
strategy in classification of urban area using hyperspectral imagery and LiDAR data. 
European Journal of Remote Sensing 50 (1), 222–236. 

Heckel, K., Urban, M., Schratz, P., Mahecha, M.D., Schmullius, C., 2020. Predicting forest 
cover in distinct ecosystems: The potential of multi-source Sentinel-1 and -2 data 
fusion. Remote Sens. 12 (2), 302. 

Held, A., Ticehurst, C., Lymburner, L., Williams, N., 2003. High resolution mapping of 
tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int. J. 
Remote Sens. 24 (13), 2739–2759. 

Hofton, M.A., Minster, J.B., Blair, J.B., 2000. Decomposition of laser altimeter 
waveforms. IEEE Trans. Geosci. Remote Sens. 38 (4), 1989–1996. 

Hong, D., Gao, L., Hang, R., Zhang, B., Chanussot, J., 2022. Deep encoder-decoder 
networks for classification of hyperspectral and LiDAR data. IEEE Geosci. Remote 
Sens. Lett. 19, 1–5. https://doi.org/10.1109/LGRS.2020.3017414. 

Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q., Zhang, B., 2021. More 
diverse means better: Multimodal deep learning meets remote-sensing imagery 
classification. IEEE Trans. Geosci. Remote Sens. 59 (5), 4340–4354. 

Hribljan, J.A., Suarez, E., Bourgeau-Chavez, L., Endres, S., Lilleskov, E.A., 
Chimbolema, S., Wayson, C., Serocki, E., Chimner, R.A., 2017. Multidate, 
multisensor remote sensing reveals high density of carbon-rich mountain peatlands 
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