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A B S T R A C T   

The Landsat archive having consistent revisit times, near global extent and extensive multi-decadal temporal 
coverage offers a unique opportunity for land cover land use product generation. Along with this vast volume of 
freely available data, new classification methods based on deep learning have improved modeling capabilities. 
This manuscript investigates the effect of intra-annual Landsat scene availability in the accuracy of land cover 
land use classification in the conterminous United States. More specifically, we seek to quantify the effect of: i) 
increased monthly scene availability, and ii) specific months that may result in higher classification accuracy 
across different classes. Identifying specific months with comparable classification accuracy to the entire time 
series could offer significant computational gains for large-scale mapping. Our experiment incorporated deep 
learning classifiers and a wide range of reference data across the continental United States. Results were con
trasted between five large U.S. climatic regions to further differentiate this intra-annual effect. Our findings 
indicate that the total number of months can have a highly variable effect in the classification accuracy ranging 
from minor (a few percentage points in terms of class F1 accuracy) to extremely beneficial (approaching 50% F1 
improvement moving from four to twelve month observations). The benefit of increased month observations 
varied among climatic regions and classes: when all climate regions were combined, the grass/shrub and 
cultivated classes improved their F1 accuracy up to 30%, while the water class saw the least improvement of 
about 5%, partially due to its limited room for improvement. The effect of specific month combinations was also 
examined, where the total number of months was kept constant and the included months varied. The difference 
between the best month combination and the median combination value was estimated to be as high as about 
30% for the four monthly observations scenario and the grass/shrub class. Further validation of the month se
lection importance comes from an example implementation scenario where F1 improvements can be as high as 
10%. Our work demonstrated that month selection may offer such benefits that in some classes and climatic 
regions this time selection optimization is an inevitable choice due to large accuracy improvements. Also, the 
potential data reduction with targeted month selection would be particularly appealing to large-scale classifi
cation tasks. Due to the large extent of the climatic regions further studies are needed to quantify a more 
localized effect along with explanation of potential drivers.   

1. Introduction 

Land Cover Land Use (LCLU) classification using remote sensing 
observations has been a popular and well-studied research topic over the 
past decades. Currently, multiple remote sensing platforms exist that 
provide global or near-global earth surface observations. This provides a 
plethora of possibilities to combine data from different dimensions 
(spatial, temporal, spectral) and acquisition technologies (optical, radar, 
lidar). However, when multi-decadal studies are the focus, Landsat is the 

only mission series that provides consistent, continuous global coverage 
of the earth surface for almost five decades. Justifiably so, Landsat is 
known as the workhorse satellite series when it comes to land imaging. 
Example Landsat-based products include USGS’s national land cover 
database (NLCD) maps created for selected years from 2001 till 2019 
(USGS, 2018) plus a legacy product for 1992 (Dewitz, 2000). Other 
continental or global examples include Europa’s Corine land cover maps 
for the years 1990 and 2000 (EC JRC, n.d.), and GlobeLand30 global 
land cover map for the years 2000 and 2010 (J. Chen et al., 2017). A 
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comparison of products over the continental U.S. is available in Wang 
and Mountrakis (2023). 

One of Landsat’s benefits is the near bi-weekly revisit time from a 
single sensor or more frequent for years with overlapping operational 
sensors. This high temporal frequency offers additional modeling ca
pabilities. For example, Julien, Sobrino, and Jiménez-Muñoz (2011) 
used multi-temporal Landsat data to generate a model for land cover 
dynamics and derived parameters for classification. Zhu and Woodcock 
(2014) presented their CCDC model, which takes into account dense 
Landsat observations. Lymburner et al. (2013) and Shen and Evans 
(2020) combined different Landsat mission data to improve their 
vegetation spectral signature model, and Singh and Gray (2020) took 
advantage of multi-temporal observations and spectral unmixing to 
resolve endmembers. Y. Chen et al. (2022) used stacks of Landsat im
agery for cloud removal. 

The above examples provide a sample of the application breadth for 
the use of dense Landsat data in modeling land cover dynamics. Since 
our work focuses on direct use of dense multi-temporal Landsat infor
mation in classification tasks we focus further on these approaches. 
Traditionally, direct use of dense multitemporal information was based 
on calculating spectral-temporal metrics (STMs) to reduce a variable- 
length time series to a fixed number of statistical metrics used as clas
sification inputs. This can be done on original bands data or derived 
spectral indices such as NDVI, see examples by Bauer, Yuan, and Sawaya 
(2004), Zheng, Campbell, and De Beurs (2012), or McInerney et al. 
(2019). Another approach reporting gains is to concatenate a vector of a 
number of observations (or derived features) and use a multitemporal 
sequence to conduct the classification A common practice in this case 
was the combination of Leaf-on / Leaf-off or wet / dry season observa
tions to enhance classification performance. Examples include forest 
classification by Wolter et al. (1995), wetland classification by Frohn 
et al. (2012), or general land use classification by Kantakumar and 
Neelamsetti (2015). 

In recent years, our capabilities to incorporate more temporally 
dense Landsat information in the classification have increased. Firstly, 
the Landsat archive has been reprocessed and access to the full temporal 
span of Landsat is provided in a consistent manner through USGS 
Landsat 4–8 Analysis Data Ready (ARD) product line (Dwyer et al., 
2018). The ARD product not only uses enhanced processing on acquired 
Landsat scenes to increase their radiometric and geometric accuracy, but 
also includes reprojection and combination of multiple overlapping 
scenes within a unified square tiling system. Preprocessing tasks and 
classification activities have moved to the cloud (e.g., using Google 
Earth Engine and Google Colab) thus democratizing access and pro
cessing capabilities. Secondly, with the proliferation of deep learning 
methods, classification algorithms can more effectively take advantage 
of temporally dense information (see a review of deep learning appli
cations in remote sensing in Heydari and Mountrakis, 2019). Examples 
of time-dimension processing deep networks are gaining momentum in 
remote sensing classification applications, starting from memory-based 
network (e.g., employing Long Short Term Memory cells), attention- 
based or transformer mechanisms. Memory-based networks look at the 
entire time-series instead of focusing on just one observation and try to 
extract useful features. They first appeared in the land cover classifica
tion literature in 2017 (for example see Rußwurm and Körner, 2017). 
Attention-based mechanisms go one step further and try to detect sam
ples with higher importance within the sequence and focus on them. The 
transformers utilize attention layers in an encoder-decoder architecture. 
These advanced models were developed in other deep learning fields 
and have recently transitioned in remote sensing applications (for 
example see Jannat and Willis, 2022). 

Due to variability in geographic availability and quality of Landsat 
observations through time, the effect of the observations number and 
timing (especially for calculating spectral-temporal metrics (STMs)) has 
been of interest to many researchers. One of the early studies is by 
Guerschman et al. (2003), which used multitemporal Landsat data in 

Argentina and combined two, three, or four observations (one from each 
season) showing better results when using multiple dates. Rufin et al. 
(2015) calculated the drop in Amazonian deforestation mapping accu
racy by randomly dropping a different number of yearly observations 
when computing the STMs used for classification. Hansen et al. (2016) 
mapped tree-height distribution in Africa using Landsat data and 
correlated mapping accuracy to Landsat observation counts. (Griffiths 
et al., (2019) processed over a year of harmonized Sentinel/Landsat data 
over Germany to produce 10-day, monthly, and seasonal composites for 
land cover classification and found the accuracy to be highest for 10-day 
composites and lowest for seasonal composites. X. Zhang et al. (2019) 
used an ensemble of RF classifiers to classify each Landsat observation to 
a land cover type and aggregated the results by a second stage RF 
classifier to map the entire China. Accuracy increased by the number of 
observations to a maximum of 21 observations and then decreased, but 
no month or seasonal analysis was performed. Recently, Frantz et al. 
(2023) looked at the availability of Landsat observations globally for 
different world climate zones and estimated the number of observa
tions/gap between the observations required to get a reliable value of an 
STM to use in further classifications. 

Season-based observation binning and mixing was also considered. 
For example, Liu et al. (2015) found that vegetation/open land cover 
classification in their study area in Burkina Faso is more accurate when 
using dry vs wet season imagery, but they did not find significant 
improvement in concurrent dry and wet imagery usage. Senf et al. 
(2015) considered a 5-class land use (agriculture/natural land) classi
fication for an area in Portugal based on six Landsat images, each ac
quired in a different month in 2011. Best single month and two-month 
(March/September) combinations were identified along with their im
plications for different land cover types. Li et al. (2017) tackled 11-class 
global land cover mapping and used a specific number of samples from 
each month to contrast accuracy between of a single month, seasonal, 
and complete samples. Specific months and seasons with better perfor
mance were identified, but optimal multi-month combination was not 
studied. Karakizi et al. (2018) considered 4 datasets composed of 11 to 
18 scenes with different scene cloud cover percentage (not sorted in time 
or season) in 2016 for an area in Greece, and generated detailed land 
cover maps based on each of 4 scenario datasets and calculated change 
in accuracy metrics by including more scenes. Zhang et al. (2019) 
analyzed the importance of different bands for each of their five Landsat 
image scenes when used individually or together, and found two specific 
bands and two specific dates to be more important than the others. At a 
continental scale, Pflugmacher et al. (2019) used some different sets of 
STMs including both yearly and seasonally (over 4 different ranges of 
months) to classify land covers over Europe. 

However, most of the past studies were either working on derived 
statistics and not full time series, or did not look at the effect of including 
specific month observations and their combination on classification 
accuracy. Particularly, elaboration on the impacts of month selection on 
specific land covers and advising on the optimum configuration for 
different land covers is rarely studied. The scope of some researches was 
global and some was local, but there was no study to analyze the 
importance of monthly observations over a large continental area in 
southern or northern hemisphere such as conterminous United States. 
Here, we fill this gap and explicitly study the effect of intra-annual 
Landsat scene availability in the accuracy of land cover land use clas
sification. More specifically, we seek to answer these research questions:  

- What is the accuracy benefit of increased monthly scene availability?  
- Which calendar months result in higher classification accuracy 

across different classes?  
- Can the intra-month accuracy benefit be quantified across different 

classes and continental US regions? 

The rest of the manuscript contains a description of our reference 
dataset in section 2, section 3 presents the methods used to conduct the 
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experiment, followed by results in section 4 and discussion in section 5. 

2. Study area and reference dataset 

The study area covers 84 blocks of size 10 km x 10 km (333x333 pixels 
with spatial resolution of 30 m), selected from an original dataset of 2717 
land cover blocks that were produced for USGS Land Cover Trends Project 
(https://www.usgs.gov/centers/wgsc/science/land-cover-trends). Due to 
the extensive manual labeling conducted to create the reference dataset 
84 representative blocks were selected from the 2717 available. The 84 
sample blocks were selected in such a way that each one of them fall 
into one of 84 level III EPA ecoregions (see https://www.epa.gov/eco-rese 
arch/level-iii-and-iv-ecoregions-continental-united-states). The land cover 
labels were re-inspected and validated in a previous study over years of 
2005–2019. For more information on block processing and land cover 
assignment and validation see Mountrakis and Heydari (2023). For the 
purpose of this research, all samples were aggregated in climate regions to 
access classification accuracy across different climatic conditions using the 
Köppen-Geiger climatic classification scheme 1 km maps (Beck et al., 
2018). Considering the limited amount of our model validation points in 
each individual Köppen-Geiger climatic class, we further aggregated these 
classes into five general climatic regions (Table 1). The resulting climatic 
regions (CR) map is shown in Fig. 1. 

In this manuscript pretrained deep learning classifiers are used from 
our priori work (Mountrakis and Heydari, 2023). These classifiers were 
trained on a large 20 M sample dataset. The validation dataset, which 
was spatially independent from the training dataset, contained 
2,297,679 samples. This was the combined result of samples from each 
of the 84 blocks and represents a single Landsat cell. Each sample is a 
sequence of all available Landsat Surface Reflectance (SR) Tier-1 ob
servations for a given year and topographic data, accessed and processed 
via Google Earth Engine platform. Landsat SR Tier-1 data is already 
processed for atmospheric errors but we also used the radsat_qa and 
pixel_qa quality bits to further remove saturated pixels and cloud/cloud 
shadow cases. Landsat observations were taken from all available 
Landsat 5, 7, and 8 missions but limited to six bands of Blue, Green, Red, 
NIR, SWIR1, and SWIR2. Pixel topographic variables including eleva
tion, slope, and aspect are also calculated from the Shuttle Radar 
Topography Mission (SRTM) digital elevation data and added to Landsat 
data. Furthermore, eight different spectral indices were added targeting 
vegetation, water, built-up area, bare soil, and soil wetness along with 
32 spatial features from Gray-Level Co-occurrence Matrix (GLCM) 
analysis (see Mountrakis and Heydari (2023) for a detailed list).The 
length of the sequence (i.e., the number of Landsat scenes for that year 
for a given sample) can vary significantly depending on cloud coverage 
and Landsat sensor availability. To conduct our multi-temporal analysis 
only samples that contained at least one valid observation for each 
month of the sequence’s year were selected. In cases where multiple 
observations were available within a given month only one observation 
from that month was selected randomly. After this filtering, the reduced 
dataset contained 540,078 samples, each containing the same sequence 
length (12 months) with only a single observation per month. 

Each sample had one of seven land use classes associated with it: 
Water, Impervious, Grass/shrub, Forest, Bare, Cultivated, and Wetland. 
Land use class definitions are given in appendix A, and these definitions 
were used in model building carried out in our previous work 

(Mountrakis and Heydari, 2023). Distribution of these classes varied 
between climatic regions (CRs). To make results across climatic regions 
comparable, the reduced dataset is randomly sampled aiming to extract 
approximately 1000 samples per land use class per climatic region to 
have the total number of samples for each class equal to 5,000 (and total 
number of samples close to 35,000 for the seven classes) as summarized 
in Table 2. The bare class was considered only for the Arid climatic re
gion in further processing due to insufficient samples in other CRs. For 
the other four climatic regions the missing share from the bare class was 
filled by samples from other classes to keep the total samples per class 
across all CRs equal at 5000. Therefore, our final dataset consists of 
35,000 samples well distributed across climatic regions and classes and 
containing full 12-month complete sequences. The uneven bare class 
sample distribution may have a negative impact on the performance of 
other classes, especially those that are spectrally similar (e.g. imper
vious). However, overall our analysis is considered appropriate. 

3. Methods 

3.1. Classifiers 

Predicted maps from pre-trained classifiers were used to study the 
effect of scene availability in our experiments. These deep learning 
classifiers were trained for LCLU classification using a large number of 
samples from the conterminous United States in our prior research as 
presented in appendix B but not detailed here because their develop
ment is not part of the methods in this paper. Shortly, the architecture 
consisted of a two-layer convolutional neural network to extract spatial 
features from input data, followed by a recurrent neural network to 
extract features related to the temporal dimension. A multilayer neural 
network processed the static invariant data (such as topography) and 
another multilayer network processed the combination of the afore
mentioned outputs and generated the final features to be used to assign 
the final class label. It is important to note that the combination of 
convolutional and recurrent layers allowed all models to capture 
simultaneously both the spatial and temporal dimensions of spectral 
variability. 

To increase the confidence of the obtained results 40 different deep 
learning classifiers were selected. These 40 models all have the same 
general structure presented before, but with different numbers of CNN 
filters, LSTM cells, MLP neurons, or other optimization parameters (the 
details are presented in appendix B). Our prior simulations showed very 
similar classification accuracy across the 40 models, thus ensuring that 
accuracy variability would be driven by input scene availability, not 
classifier limitations. 

3.2. Month combinations 

Based on the selected 35,000 full 12-month samples discussed in 
section 2, we generated specific month combinations for a given number 
of months for each sample and created a combined months dataset. This 
combined month dataset is tested by the classifiers introduced in section 
3.1, and the classifiers predictions are compared to reference values. For 
example, when four-month combinations were examined, there were 
495 unique four-month combinations (e.g., Feb + Apr + Sep + Oct) 
possible from the 12-month pool (Jan through Dec). The number of 
combinations was 924, 495, and 66 for six, eight, and ten months, 
respectively, while the twelve months had a single combination. 
Therefore, for each sample the total combinations considered was 1981 
leading to a total pool of 69,335,000 simulations for the 35,000 samples. 

4. Results 

Each of the 40 different deep learning classifiers was simulated 69 M 
times. F1 class accuracy metrics were obtained and organized in climatic 
regions for reporting and discussion. 

Table 1 
Aggregated five climatic regions in our study.  

# Description Corresponding Köppen-Geiger class code 

1 Temperate, no dry season 1,2,3,14,15,16 
2 Arid 4,5,6,7 
3 Temperate, dry summer 8,9,10 
4 Cold, dry/hot summer 17,18,19,21,22,25 
5 Cold, no dry season 26,27,29  
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4.1. Accuracy effect of total month scene availability per class and 
climatic region 

The first objective was the examination of the effect of total scene 
availability. Results were grouped separately for each climatic region 
and class. Fig. 2 presents F1 class accuracy for different total month 
number combinations, from 4 to 12. Using less than 4 months was not 
considered as it would not be taking advantage of the multitemporal 
intrinsic value of the Landsat archive. First, each of the 40 classifiers was 
simulated on all possible month combinations for a given total month 
number (e.g. 495 combinations for N4) for each sample that falls in that 
climatic region and class (e.g. 1000 samples for the water class in the 
arid region). The class F1 accuracy was calculated for each of the 
possible month combinations (e.g. 495 combinations for N4) and the 
median F1 value was extracted. Each of the 40 classifiers generated a 
single median F1 accuracy for a given class in a specific climatic region 
and for a specific total month combination. The variability of these 40 
classifiers is presented as the boxplot range. The extraction of the me
dian and not the best F1 accuracy for each possible month combination 
(e.g. median, not best, of the 495 combinations for N4) results in the 
boxplots depicting the average, not optimal, performance of each total 

month combination. Therefore, results should be interpreted in a rela
tive comparative manner, not in isolation as the best performance for 
each region/class. Further analysis of the specific month combinations 
for a given total month number is presented in the next section. 

The effect of increasing temporal information varies by region and 
class:  

- The water class benefits the least from multitemporal information. It 
is well-documented that water is fairly straightforward to extract 
using Landsat’s infrared bands.  

- The impervious class improvements vary from considerable (~10 %) 
for the two temperate CRs and the cold, dry/hot summer CR, to 
substantial (~20 %) in the cold, no dry season CR to immense (~35 
%) for the arid CR.  

- The forest class gains are considerable (5–10 %) for all regions with 
substantial (~15 %) improvements in the cold, no dry season.  

- The wetland class improvements are considerable (5–10 %) for three 
CRs, with immense improvements for the cold, no dry (~30 %) and 
arid (~50 %) CRs. For the latter two CRs the accuracy gains from 
four to six month combinations are particularly notable demon
strating the quick improvements for a lengthier temporal record. 

Fig. 1. Climatic regions and sampling blocks.  

Table 2 
Number of complete 12-month samples for each class and climatic region.   

Support (number of complete 12-month samples) 

Climatic Region Water Impervious Grass/shrub Forest Bare Cultivated Wetland 

Temperate, no dry season 1000 1000 1000 1000 72 1000 1273 
Arid 1000 1000 1000 1000 4579 1000 1000 
Temperate, dry summer 1000 1000 1000 1000 40 1000 1000 
Cold, dry/hot summer 1311 1000 1000 1000 289 1000 727 
Cold, no dry season 689 1000 1000 1000 20 1000 1000 
Total (35,000): 5000 5000 5000 5000 5000 5000 5000  
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- The grass/shrub and cultivated classes exhibit similar behavior, an 
expected result due to their spectral mixing, especially for some 
months of the year. Improvements are interchangeable and sub
stantial across all CRs. Of particular note is the grass/shrub 
improvement of almost 40 % from 4 months to the full 12 month 
sequence in the cold/dry region.  

- The bare class, that was examined only in the arid CR due to lack of 
strong presence in the other CRs, also shows substantial improve
ments, partially attributed to improvements to other spectrally 
similar classes such as the impervious and cultivated classes. 

4.2. Accuracy effect of specific month scene availability per class and 
climatic region 

In this section we seek to identify the specific months that offer the 
highest accuracy improvements within a given total month scenario. 
Previously the median F1 value across all possible combinations for each 
of the possible month combinations was extracted for each class (e.g. 
median of 495 combinations for N4). Here, we ranked all possible 
combinations and extracted the highest performing ones for each class 
using the 90-percentile value of F1 as the inclusion threshold. For 
example, in the case of N4, the 495 possible four-month combinations 

Fig. 2. Variation of F1 class accuracy within 40 models for different CRs and different total month number combinations.  
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were ranked based on their F1 accuracy and the top 10 % combinations 
(49) were extracted. The process was repeated for each of the 40 clas
sifiers, and all of selected month combinations were aggregated. Then 
the frequency of occurrence of each specific month (e.g. Jan) among 
them was counted, and the result is converted to a percentage to 
compare between the effect of different months. For example, if a month 
appears in all selected month combinations, then it’s percentage will be 
10. 

Tables 3, 4 and 5 present the results for four, six and eight month 
combinations, respectively. The color-coded 12 columns on the right 
show the relatively presence of a particular month in those top 10 % 
combinations. These tables organize findings by class and then by cli
matic region (CR). A reordered version of these tables by individual 
climatic regions and then classes is provided in appendix C. The column 
F1(Max) shows the maximum of calculated F1 value in each row, and 
the column F1(Med-Max) provides the accuracy difference between the 
median and maximum value calculated for that row. It is an important 
starting point in the analysis as it quantifies the impact of the month 
selection. A low difference indicates that month selection is not 
considerably affecting the results for that particular CR and class, 
therefore specific month analysis is not needed. The patterns in these 
tables generally match, particularly 6 and 8 best months as they are 
probably better indicators than the 4-month table. For example, for 
Impervious class of Cold, dry/hot summer CR, Aug is an important 
month for all 4/6/8 months. For the same class in Arid CR, best months 
for 6- and 8-month scenario match but 4 month scenario is a bit 
different. 

A first general remark is that the highly influential months may vary 
for a given class from one CR to another. Furthermore, some classes and 

CRs benefit from specific month combinations while in others the gains 
are minimal. This information is of considerable value for large scale 
mapping efforts, for example the NLCD or LCMAP products. Targeting 
specific months in certain regions instead of using the entire time series 
could offer significant computational gains with minimal accuracy loss. 
Another opportunity relates to improved communication of classifica
tion limitations. By knowing the incorporated months for each pixel’s 
classification along with the resulting class label using our work as a 
proof of concept future classification efforts could improve estimations 
on the associated accuracy of the classification – e.g. were better or 
worst months used. 

While for completeness we included the three tables below, the 
following discussion is based on the 4-month combination as the specific 
month benefits are compressed with the inclusion of a higher month 
total number. More specifically:  

- Water: Typically, the easiest classification task, only the arid CR 
exhibits low accuracy (Max = 92.0 %) and variability between 
months (Max-Med = 4.3 %) that specific month investigation is 
warranted. For the arid CR observations from late summer (August 
and September) are most suitable.  

- Impervious: Specific month benefits could be arranged in three 
groups: 3.4 % for the temperate, no dry CR, ~5% for the three dry 
CRs and 8.8 % for the cold/no dry CR. In the arid CR, December is 
showing an unusually strong contribution that is not present in other 
CRs. The temperate, dry CR also exhibits unique behavior through 
the importance of the Jan, Feb and Mar months. Late summer/early 
fall are important in the other CRs. 

Table 3 
Month relative importance and range of improvement for optimum 4-month selection.  
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- Grass/shrub: Consistently the most challenging class also benefits the 
most from specific month selection. Unfortunately, the least accurate 
CR (arid with Max = 50.7 %) benefits the least at 6.9 % using Mar 
and late fall observations. The temperate, dry and cold, no dry CRs 
see benefits close to 11 %, however with different prevailing months. 
More distributed with late winter for the former, more concentrated 
in the summer early fall in the latter. The temperate, no dry CR shows 
substantial gains of 17.1 % with only imagery from May or later 
being useful. Lastly, the cold, dry CR shows the most improvement 
with 30.3 % and highly concentrated month prevalence in the second 
half of the year and specifically the fall months.  

- Forest: Four CRs show improvements in the 3.6 %-5% range with a 
wide variability in month importance. The most underperforming CR 
(arid) shows the most improvement with 13.6 % with the unique 
importance of Oct and Nov and also the highest Dec contribution.  

- Bare: With only sufficient samples to study it in the arid CR, 
December is a critical month offering substantial overall improve
ments in the 6.1 %.  

- Cultivated: Second most challenging class with improvements 
ranging from 5.9 % to 13.9 % depending on the CR. Mar is influential 
for the Temperate dry and the arid CRs but not other CRs. Early 
summer months are important for all CRs except the temperate, dry. 
Sept is important for the two cold and the temperate, dry CRs.  

- Wetland: The high classification accuracy variability between CRs 
also translates into highly variable benefits for specific month se
lection. The temperate, no dry season is a notable example of month 
importance, with Jan and Mar having minimal contribution, while 
the month in-between, Feb, having a major impact. High importance 

moves from Mar to Apr to May for the temperate dry to the cold, dry 
to the cold, no dry, respectively. Late summer months are more 
pronounced in the arid/dry CRs. 

4.3. Performance variation compared to optimum month combination 

Section 4.1 identified the average benefit of increasing temporal 
information while section 4.2 identified specific months that were more 
prevalent in more accurate classifications. In this section, we use the 
information obtained from our previous results to examine how well it 
would translate into a practical implementation. From that perspective, 
a certain month combination should be applicable to all classes for a 
given CR. Within each CR the importance of specific months may vary 
from class to class. Subsequently, the “optimal” month combination for a 
given CR is a balancing act offering the highest average improvement 
across all classes. The following month selection process was imple
mented, repeated separately for each CR and each number of months 
scenario. The average F1 was calculated across all classes for each of the 
40 models and for each of the possible month combinations (e.g. 495 
combinations for N4). Then the model average F1 was calculated across 
the 40 models. The month combination with the highest model average 
F1 was selected. 

To quantify the potential benefits of the “optimal” month combina
tion, for each model per class F1 accuracy was compared between the 
optimal (result of above calculations) and median ranked month com
bination (result of section 4.1 calculations). Results are reported in 
Fig. 3. 

The improvements offered by the optimal month combination are 

Table 4 
Month relative importance and range of improvement for optimum 6-month selection.  
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tangible on average in the 5 %-10 % range. This is particularly evident in 
classes with low starting median accuracy, where the room for 
improvement is high. Of particular note are the improvements in the 
grass/shrub class in the temperate, no dry and the cold, dry CRs, the 
wetland in the arid CR, the agriculture in the cold, dry and the cold, no 
dry CRs. With a few exceptions, these improvements do not come at the 
cost of other classes, which also improve but to a lesser magnitude. It can 
be concluded that month selection optimization should be considered as 
specific temporal patterns could affect the result. 

5. Discussion 

Results indicate considerable variability for improvement range 
across classes and CRs. Large climate regions were selected in this first 
study to identify if there are differences rather than attribute these dif
ferences to specific mechanisms. However, at this coarse level we can 
still offer general explanations, although future follow-up work is 
needed at a more localized level. 

By examining differences across CRs a general vegetation trend, 
partially driven by climate, can be seen moving from west to east. Feb/ 
Mar months tend to be more important for the Grass/Shrub and Forest 
classes in the westernmost temperate, dry CR, followed by the arid CR in 
Mar/Apr. In the eastern U.S. the trend continues from north to south, 

with late spring having high importance in the cold, no dry northern CR, 
followed by summer in the cold, dry CR. Grass is also particularly sen
sitive to late fall months in the temperate, no dry southeast CR, while 
those months are also influential in the Arid CR for Forest. 

Wetlands also show distinct months for improved accuracy. Looking 
at the four months table the temperate, no dry identified Feb, the cold, 
dry CR identified Apr and the cold, no Dry May as the optimal months. 
For the first southeastern CR looking at the greening median week in 
Fig. 4 it seems that the optimal month precedes by a few weeks the 
greening of vegetation. For the two cold CRs, the same pattern is 
generally observed but also amplified further it follows snow melting 
effects (see Fig. 5). This is expected as the strongest wetland signature 
would be when the water level is high but before surface vegetation 
cover alters the water’s spectral signal. 

By far the largest crop in the United States is corn followed by soy
beans, which are mostly produced in the cold, dry CR (Fig. 6). The ef
fects of the crop calendar are clearly present in the month influence. In 
particular, while the mid-season is influential it is the harvest period that 
is more highlighted. Another finding is that the planting season does not 
seem to play an important role in the classification process. The sudden 
spectral change during harvest, also considering the behavior of other 
classes, suggests that early fall is the most critical time period. In the 
cold, no dry and arid CRs, the May/June planting season tends to offer 

Table 5 
Month relative importance and range of improvement for optimum 8-month selection.  
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better separability of the crop class and varies across the other CRs. 
While the impervious class does not change its spectral signature 

over time, the ability to separate it is dependent on spectral confusion 
with other classes. A particularly known confusion is between imper
vious and soil. While our dataset did not have enough samples to study 
bare lands in multiple ecoregions, we can contrast impervious with the 
cultivated class. In general, summer months tend to assist the most in 
impervious classification, which could be attributed to the presence of 
crop cover of the cultivated areas and potentially the greening of the 
vegetated classes. A notable exception is Dec, which works well for the 
Impervious and the Bare class for the arid CR. Finally, the water class is 
easier to distinguish in Sep for the dry CRs (arid and two CRs with dry 

summers) but improvements are minor. As for Forest class, some months 
tend to prevail over others (e.g. Aug for the temperate, no dry and Mar 
for the temperate, dry CR), however, no conclusive explanations could 
be identified. Possibly smaller regions, driven by forest species distri
bution, could provide better insights. 

The impact of our decision to include a single observation per month 
should be acknowledged. The rationale is to avoid bias in the obtained 
results, which look specifically at each month’s importance. In some 
cases, multiple month observations may further benefit classification 
accuracy further (e.g. detecting agriculture during the growing season). 
The goal of this work is to identify prevailing months to support future 
investigations at a finer temporal resolution (e.g. weekly) conducted in a 

Fig. 3. Variation of F1 class accuracy gain within 40 models for different CRs and different total month number combinations (note that Y-axis limits vary for 
presentation). 
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more targeted manner. This is possible as the Landsat archive within the 
conterminous United States the average annual number of non-cloudy 
observations varies between 14.23 and 30.07 (Egorov et al., 2019). 
Additionally, while the sampling design ensured the spatially indepen
dence between training and testing samples, the presence of both 
training and testing samples from each of the 84 blocks is boosting the 
accuracy of the obtained results, however this is not affecting out con
clusions as that bias is present across all months. 

Finally, we should clarify that our goal here is to investigate the ef
fect of specific months in the classification, not to produce an optimized 

classifier. We have selected a reasonable architecture that was well- 
tested in our prior work to amplify those monthly differences. Our 
hope is that those targeting mapping activities will embed our findings 
in their own architectures to optimize month selection based on class 
and region of interest, which in turn could improve accuracy and 
computational efficiency. 

6. Conclusion 

In this research we studied the effect of individual month 

Fig. 4. Median start of greenup date (). 
adapted from https://forwarn.forestthreats.org/highlights/917 

Fig. 5. Average annual snowfall and snowmelt day of the year statistics (). 
adapted from https://atlas.niu.edu/klot/snowclimatology/USSnowContours.png 
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observations in Landsat time series for land cover/use classification 
across five general climatic regions in the conterminous United States. 
The study showed potentially substantial gains in classification accuracy 
over different classes and climatic regions by varying the total obser
vation months and the months selected. Benefits can be as substantial as 
50 % as shown in Fig. 2 for the grass/shrub class in cold, dry climatic 
region. Further validation of the month selection importance comes 
from an example implementation scenario (Fig. 3) where F1 improve
ments can be as high as 10 %. 

Our analysis used one observation per month. New Landsat missions 
and fusion with harmonized Sentinel observations can reduce revisiting 
time to a couple of days, thus supporting in the future higher temporal 
resolution, where for example optimal weeks instead of months could be 
identified. Furthermore, areas of distinct spectral behavior could be 
identified (e.g. local climate, specific crops or vegetation) and studied 
separately to offer an even more targeted approach on temporal infor
mation selection. Lastly, while we touched upon explanation on the 
observed temporal patterns further studies are required to offer more 
conclusive results. 
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Appendix A:. Land cover class definitions and class-specific considerations  

Water Ponds, lakes, rivers, oceans that are persistently filled by water.For lakes, ponds, and oceans, only the pixels demonstrating a persistent water presence were included. For 
streams/rivers, a pixel was assigned to the water class when deemed necessary to preserve the spatial continuity (i.e., avoid river breaks), even if the water occupied 
less pixel area than other classes). Water presence was required to be persistent through time, therefore seasonal water presence (e.g., seasonal streams, limited 
flooding) did not qualify a pixel for the water class. Presence of algae on the water surface did not disqualify a pixel from water class assignment. 

(continued on next page) 

Fig. 6. Corn and soybean map and harvesting calendar (). 
adapted from https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=US 

G. Mountrakis and S.S. Heydari                                                                                                                                                                                                             

https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=US


ISPRS Journal of Photogrammetry and Remote Sensing 212 (2024) 164–180

175

(continued ) 

Impervious Built-up area including houses, factories, barns, parking lots, roads (paved or dirt), railroads.The developed class was prioritized over all other classes. When 20 % or higher 
of the pixel area was deemed developed the pixel was assigned to the developed class. Road pixels, even when occupying less than 20 % of pixel area were still assigned 
as developed when it was necessary to preserve their spatial continuity. Dirt roads were considered falling in the developed class, but irregular/temporary tracks and 
trails/footpaths were not. 

Grass/ 
Shrub 

Low vegetation that is not cultivated, including natural patches, pasture and grazing land, and man-made patches.Man-made patches including yard lawns, city parks, golf 
courses, and soccer fields were assigned to this class. Pasture and Grazing lands that are not intensely cultivated were also included here. 

Forest Tall vegetation (taller than typical grass/shrubs) that is not intensely cultivated.All tree types, including forest plantations, were assigned as forest. Tree orchards were not 
assigned as forest. 

Bare Soil, rocks, mining land, or land with very limited vegetation.If vegetation was identified as majority for a pixel area even for a short time period it was labeled as grassland 
and not barren. Sand dunes and dry sandy areas were assigned in the barren land. This class includes Barren, mechanically disturbed, and nonmechanically disturbed 
classes of the original 11-level Anderson classification scheme. 

Cultivated Cultivated areas demonstrating distinct agricultural parcel shapes and tilling lines, including orchards and vineyards.For designation as cropland, these characteristics were 
sought for at least 20 % of the pixel area: 1) row pattern of tilling/cultivation, 2) temporal high contrast color transition from green to yellow, 3) regular rectangular 
shape with clear farm edges. 

Wetland A typically vegetated area that is periodically saturated or covered with water.For designation as a wetland (that may have low plants or high trees mixed with water) water 
should be present mixed with vegetation most of the time. There should be no clear water boundary as the boundary may change every year (unlike a lake or a pond). 
For woody wetlands, where water was difficult to identify under thick canopy, wetlands were assigned when high vegetation turnover was present. Examination of 
these challenging pixels during winter months was a critical decision component. Muddy, vegetation-free areas in lake borderlines or seashores were assigned as 
wetland, not barren land.   

Appendix B:. Model characteristics and class accuracy 

Classifiers used in this study are taken from a previous research as explained in Mountrakis and Heydari (2023);a summary of that is presented here 
for completeness. The general schematic of our approach is shown in Figure B-1. To assess the value of temporal and/or spatial information three 
network architectures were tested. The first deep learner only examines individual pixel temporal information using a Long Short-Term Memory 
network (T-LSTM). The second network (ST-LSTM) adds expert-selected spatial neighboring features to the T-LSTM. The third network (C-LSTM) adds 
to the ST-LSTM automatically generated features using a convolutional neural network.

Fig. B1. Classifiers system architecture. T-LSTM shows the building blocks of the basic model. The ST-LSTM model adds the ST-LSTM supplement to T-LSTM, and the 
C-LSTM model adds both ST-LSTM and C-LSMT supplements to the model (figure from (Mountrakis and Heydari, 2023)). 
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The base data in all models were sequences of Landsat data and static topographic data. Each annual sequence contained several temporal records. 
Each record represented a specific observation day and sensor. For the T-LSTM the annual Landsat sequence was fed to a recurrent network. Static 
topographic data were in the form of 1-D vector and for each pixel, there was one vector of static features corresponding to one annual sequence of 
Landsat-based features. The static features were processed by a standard multilayer neural network. Output features from the recurrent and the 
standard neural networks were concatenated and fed to a second multilayer network for further processing with the latter producing the assigned land 
cover to the input pixel. 

In the case of the ST-LSTM the only difference was that the recurrent network was also fed with expert-selected patch statistics from neighboring 
pixels. For the C-LSTM, in addition to the expert-selected spatial features, features selected automatically from a convolutional neural network were 
also included as inputs for the recurrent network. 

It is shown in the reference paper that C-LSTM model provides the best performance, therefore we focused on that model. The classifiers in the prior 
research were trained using a limited grid search approach to tune the model parameters, and the last simulation runs brought many models all having 
similar performance (i.e. very little difference in overall accuracy). As explained in the main text of the paper, we chose 40 of the last C-LSTM models 
to conduct the analysis in this paper as detailed in table B-1. The table shows the architecture, dropout ratio and F1 accuracy of the 40 models used in 
the analysis. These models have the same layer structure, composed of one convolutional (CNN), one recurrent (LSTM), and two multilayer neural 
networks (MLPs) cascaded together. For each section, the number of neurons (or filters for CNN) in each layer is mentioned as a comma-separated 
entry in the corresponding column. Being a complex network with millions of parameters, the dropout method was used to reduce network over
fitting and therefore this setting is also included below. Some other minor differences in network learning parameters between different models exist 
but are not reported here. Each model’s average and per-class F1 performance is also given. 

Table B1 
Structure and performance of 40 candidate models taken from a prior research and used in the research of this paper.  

Modelcode CNNlayers LSTMlayers 1stMLP 2ndMLP Dropoutratio* averageF1 F1water F1impervious F1grass F1forest F1bare F1cultivated F1wetland 

G9_12_0 96, 144 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.975  0.969  0.994  0.982  0.983 
G9_12_1 96, 168 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.993  0.981  0.974  0.969  0.994  0.982  0.983 
G9_13_0 96, 192 360,320,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_17_0 96, 192 350,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_17_2 96, 192 400,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.993  0.981  0.974  0.969  0.994  0.982  0.983 
G9_18_0 96, 144 400,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.993  0.981  0.974  0.968  0.994  0.982  0.983 
G9_18_1 96, 192 350,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.975  0.969  0.994  0.982  0.983 
G9_19_0 96, 192 400,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_19_1 96, 144 400,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_19_2 96, 192 350,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.973  0.969  0.993  0.982  0.982 
G9_20_1 96, 192 400,320,320 32,32 128,128,128,128 0.3,0.25,0,0  0.982  0.992  0.981  0.975  0.969  0.993  0.982  0.983 
G9_21_0 96, 192 360,320,320 32,32 256,256 0.3,0.25,0,0  0.981  0.992  0.981  0.973  0.968  0.993  0.981  0.982 
G9_21_1 96, 192 340,320,320 32,32 256,256 0.3,0.25,0,0  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.982 
G9_21_2 96, 192 360,320,320 32,32 256,256 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_5_0 96, 192 360,320,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.992  0.982  0.983 
G9_6_0 128, 96 360,320,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.975  0.969  0.993  0.982  0.983 
G9_6_1 96, 192 340,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.973  0.968  0.993  0.982  0.983 
G9_6_2 96, 144 340,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.968  0.993  0.982  0.982 
G9_7_0 96, 168 340,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_7_1 128, 96 340,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.993  0.981  0.974  0.969  0.994  0.982  0.982 
G9_7_2 96, 192 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.982 
G9_8_0 96, 144 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.994  0.982  0.983 
G9_8_1 96, 168 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
G9_8_2 128, 96 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.973  0.969  0.993  0.982  0.983 
G9_9_1 96, 144 360,320,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.973  0.969  0.993  0.982  0.982 
GD_11_1 96, 128 340,340,340 32,32 128,128,128,128 0.3,0.3,0.1,0.1  0.982  0.993  0.981  0.974  0.968  0.993  0.982  0.982 
GD_12_1 128, 96 360,320,320 32,32 128,128,128,128 0.3,0.3,0.1,0.1  0.982  0.992  0.981  0.974  0.968  0.993  0.982  0.982 
GD_12_2 96, 128 360,320,320 32,32 128,128,128,128 0.3,0.3,0.1,0.1  0.981  0.992  0.981  0.974  0.968  0.993  0.981  0.982 
GD_14_1 128, 96 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.993  0.981  0.974  0.969  0.994  0.982  0.983 
GD_17_1 96, 128 320,300,280,280 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.975  0.969  0.993  0.982  0.983 
GD_18_2 96, 128 360,340,320 32,32 128,128,128,128 0.3,0.3,0.1,0.1  0.981  0.992  0.98  0.973  0.968  0.992  0.981  0.982 
GD_21_0 128, 96 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.968  0.993  0.982  0.983 
GD_22_0 96, 128 360,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.968  0.993  0.981  0.983 
GD_22_2 96, 128 360,320,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.975  0.968  0.993  0.982  0.983 
GD_23_0 128, 96 280,280,280,280 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.968  0.993  0.982  0.982 
GD_23_2 128, 96 320,300,280,280 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.994  0.982  0.982 
GD_7_1 96, 128 320,300,280,280 32,32 128,128,128,128 0.3,0.3,0.1,0.1  0.982  0.992  0.981  0.974  0.969  0.994  0.982  0.983 
GD_7_2 128, 96 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
GD_8_0 96, 128 340,340,340 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.992  0.981  0.974  0.969  0.993  0.982  0.983 
GD_8_1 128, 96 360,340,320 32,32 128,128,128,128 0.3,0.25,0.05,0.05  0.982  0.993  0.981  0.975  0.969  0.993  0.982  0.984 

* The numbers in this column refer to the dropout ratios applied to all layers of each of four sections. The first number applies to CNN layers, second one to LSTM layers, 
etc.  
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Appendix C:. Month selection map tables organized by climatic regions 

Month selection (heatmap) tables presented in the main text are sorted first by class and then by climate region. Here we reorganize the rows first 
by climatic region and then by class to allow easier comparisons within CRs. 

Table C1 
Month relative importance and range of improvement for optimum 4-month selection.  
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Table C2 
Month relative importance and range of improvement for optimum 6-month selection.  
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