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Abstract: Land cover land use (LCLU) products provide essential information for numerous environ-
mental and human studies. Here, we assess the accuracy of eleven global and regional products over
the conterminous U.S. using 25,000 high-confidence randomly distributed samples. Results show that
in general, the National Land Cover Database (NLCD) and the Land Change Monitoring, Assessment
and Projection (LCMAP) outperform other multi-class products, both in terms of higher individual
class accuracy and with accuracy variability across classes. More specifically, F1 accuracy comparisons
between the best performing USGS and non-USGS products indicate: (i) similar performance for
the water class, (ii) USGS product outperformance in the developed (+1.3%), grass/shrub (+3.2%)
and tree cover (+4.2%) classes, and (iii) non-USGS product (WorldCover) gains in the cropland
(+5.1%) class. The NLCD and LCMAP also outperformed specialized single-class products, such as
the Hansen Global Forest Change, the Cropland Data Layer and the Global Artificial Impervious
Areas, while offering comparable results to the Global Surface Water Dynamics product. Spatial
visualizations also allowed accuracy comparisons across different geographic areas. In general, the
NLCD and LCMAP have disagreements mainly in the middle and southeastern part of conterminous
U.S. while Esri, WorldCover and Dynamic World have most errors in the western U.S. Comparisons
were also undertaken on a subset of the reference data, called spatial edge samples, that identifies
samples surrounded by neighboring samples of different class labels, thus excluding easy-to-classify
homogenous areas. There, the WorldCover product offers higher accuracies for the highly dynamic
grass/shrub (+4.4%) and cropland (+8.1%) classes when compared to the NLCD and LCMAP prod-
ucts. An important conclusion while looking at these challenging samples is that except for the tree
class (78%), the best performing products per class range in accuracy between 55% and 70%, which
suggests that there is substantial room for improvement.

Keywords: accuracy assessment; land cover land use; medium resolution; conterminous U.S.

1. Introduction

Land cover and land use (LCLU) products offer significant biophysical information
on the Earth’s surface [1]. They are essential for various studies, such as biogeochemical
and climate cycles [2], earth system models [3], desertification and biological diversity [4]
and environmental resources management [5]. The considerable impact of LCLU products
has led to mapping efforts ranging from local to global extents.

The global extent LCLU maps have ranged in spatial resolution from 10 m to 1 km.
Global mapping products include the following examples, progressively presented from
coarser to finer spatial resolution as shown in Table 1: the International Geosphere-
Biosphere Program Data and Information System’s land cover product (IGBP DISCover),
1992–1993, 1 km resolution [6,7]; the University of Maryland land cover product (UMD),
1992–1993, 1 km resolution [8]; the Global Land Cover 2000 product (GLC) from the Euro-
pean Commission’s Joint Research Center (JRC) at 1 km resolution [9]; the Moderate Resolu-
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tion Imaging Spectroradiometer (MODIS) land cover product (MOD12Q1 and MCD12Q1)
available at annual scale from 2001, with 500/1000 m resolution [10,11]; the Global Map–
Global land cover (GLCNMO) product from the International Steering Committee for
Global Mapping, 2003/2008 at 500 m resolution [12]; the Global land cover Map (Glob-
Cover) from the European Space Agency (ESA), 2005–2006/2009 at 300 m resolution [13,14];
the Finer Resolution Observation and Monitoring Global LC product (FROM-GLC) from
China, 2010/2015/2017 at 30 m resolution [15,16]; the 30 m resolution Global land cover
product (GlobeLand30) from the National Geomatics Center of China, 2000/2010 [17]; the
Global map of land use/land cover (LULC) from Esri, 2017–2021 at 10 m resolution [18];
the World Cover from European Space Agency (ESA), 2020/2021 at 10 m resolution [19,20];
and the Dynamic World from Google, 2015–2023, at 10 m resolution [21].

Table 1. Global mapping products.

Product Time Resolution Reference

IGBP DISCover 1992–1993 1 km [6,7]
UMD 1992–1993 1 km [8]
GLC 2000 1 km [9]
MODIS LC 2001–2013 500/1000 m [10,11]
GLCNMO 2003/2008 500 m [12]
GlobCover 2005/2006/2009 300 m [13,14]
FROM-GLC 2010/2015/2017 30 m [15,16]
GlobeLand30 2000/2010 30 m [17]
Esri 2017–2021 10 m [18]
WC 2020/2021 10 m [19,20]
DW 2015–2023 10 m [21]

Within our study area of the conterminous United States, several regional products
exist, primarily led by the U.S. Geological Survey (USGS). One representative product
is the 30 m resolution National Land Cover Database (NLCD) covering multiple years
(1992/2001/2006/2011/2016/2019) [22]. There are also some annual products based on
Landsat data: the 30 m resolution Landscape Change Monitoring System (LCMS) from the
USDA Forest Service (USFS), annual since 1985 [23]; and the 30 m resolution Land Change
Monitoring, Assessment and Projection (LCMAP) from USGS, offering annual changes
since 1985 [24].

As collecting validation samples is labor-intensive work, the size of validation data
is usually small. However, a few large validation datasets exist. For example, Land
Use/Cover Area frame statistical Survey (LUCAS) validation data are a systematic sample
with 1.1 million points spaced 2 km apart in the four cardinal directions covering the
entire European Union (EU) [25]. The World Cover validation dataset includes more than
21,000 primary sampling units (PSUs) spread over seven (sub)continents and each PSU
contains 100 secondary sample units (SSUs) corresponding to pixels with 10 m resolu-
tion [20]. The LCMAP reference dataset by USGS is another pixel-based validation dataset
containing 25,000 samples with land use and land cover information annually from 1984 to
2018. Due to its multi-year presence, labeling consistency and large sample size over the
conterminous U.S., our study incorporated the LCMAP reference validation dataset.

The LCLU products may vary widely as different satellite data, classification schemes
and classification approaches are implemented [26] and intended usage may deviate.
Therefore, accuracy assessment of different LCLU products is essential to assist users
understand benefits/limitations and guide suitable product selection. In general, the
accuracy assessment of large scale LCLU maps follows the trajectory of large-scale maps
becoming more detailed from coarser to finer resolution. For example, four 1 km resolution
global land cover products ((IGBP DISCover, UMD, MODIS and GLC2000) were compared
and assessed [27], five global land cover products (GLCC, UMD, GLC2000, MODIS LC
and GlobCover) from 1 km to 500 m resolution around year 2000 were assessed over
China [28]. Three global products (Globcover, LC-CCI and MODIS) were compared at
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300 m resolution for the year 2005 [29], while seven global products (IGBP DISCover,
UMD, GLC, MCD12Q1, GLCNMO, CCI-LC and GlobeLand30) including resolution from
1 km to 30 m were assessed over China [26]. Liang et al. [30] evaluated four global land
cover products (GlobeLand30, CCI-LC, GLCNMO and MODIS) over the Arctic region.
Gao et al. [31] compared three global products (GlobeLand30-2010, GLC_FCS30-2015 and
FROM_GLC30-2015) over the European Union. Zhang et al. [32] compared accuracies of
six 30 m cropland products (FROM-GLC, GLC_FCS, CLCD, AGLC, GFSAD and GLAD)
over China in year 2015.

In the aforementioned studies, there are several knowledge gaps:

(i). There is no study explicitly evaluating global LCLU products over the contermi-
nous U.S.

(ii). None of the prior studies assessed accuracy differences over time for products avail-
able at multiple time periods.

(iii). None of the prior studies looked at accuracy behavior explicitly in land spatial edge
pixels, a more challenging classification task due to potential spectral mixing.

Therefore, the goal of this study is to compare and evaluate eleven medium resolution
global and regional LCLU mapping products over the conterminous U.S., both spatially and
temporally. In the next sections we present the reference dataset and the compared global
and regional LCLU followed by implemented methods including classification scheme
matching, spatial reprojection and spatial accuracy assessment in Section 3. Results are
displayed and discussed in Section 4 and conclusions are summarized in Section 5.

2. Materials

In the next sections we first present the accuracy assessment reference dataset followed
by the products that were evaluated on it.

2.1. Reference Dataset for Product Evaluation

The reference validation samples data used in this study come from the LCMAP
conterminous United States Reference Data Product, freely available from the USGS [33].
The LCMAP reference dataset contains 25,000 Landsat 30 m resolution pixels randomly
selected from pixels in the continental U.S. ARD grid system with annual labels from 1984
to 2018 [34]. The reference data were a cooperation between the USGS LCMAP group and
the U.S. Forest Service Landscape Change Monitoring System (LCMS, 2021). Annotation
protocols were established in a Joint Response Design (JRD) document [35] under the
data requirements of both projects. A team of interpreters assigned the class labels of
reference sample pixels by following a common response design using a special reference
data collection tool called the TimeSync [36,37], which shows all available Landsat data,
including anniversary date images for each year for interpreters. Interpreters visually
interpreted each sample pixel and determined land use, land cover and change process
attribute labels for every year which were bridged to LCMAP classes. The LCMAP reference
data has consistent high quality due to various quality assurance and quality control
(QA/QC) processes. The interpreters’ overall agreement was 88% and average individual
class agreement ranged from 62% for barren to 94% for water (with lower agreement of
74% for wetland and higher agreement over 81% for other classes) [37]. The barren and
wetland had lower interpreter agreements since the they were represented less. Since a
lower agreement of reference data may influence accuracy assessment results, users should
be careful with results of barren and wetland classes. However, the effects should not be
significant as the overall agreement is high. In this study, 24,971 samples were used as
there are 29 samples falling outside of LCMAP area. We extracted seven thematic class
labels from LCMAP for the assessment, namely: Developed, Cropland, Grass/Shrub, Tree
cover, Water, Wetland and Barren. Table 2 shows the number of samples for each class for
the overall dataset and a subset containing spatial edge samples. Spatial edge samples are
defined as the samples where at least one of its eight neighborhood pixels has a different
class label from the center sample. It was calculated using the NLCD 2016 dataset as results
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later indicated this was the most accurate product. While the NLCD 2016 product was
used and we have no way of explicitly identifying its accuracy on those 3 × 3 patches, the
accuracy drop reported in spatial edge pixels implicitly suggests that these were indeed
heterogenous patches. The intent behind accuracy comparisons on spatial edge pixels is
to identify samples in heterogenous land cover areas where classification tasks tend to be
more challenging.

Table 2. Sample number per class for the overall reference dataset and the spatial edge samples.

Samples Developed Cropland Grass/Shrub Tree Cover Water Wetland Barren

All 1372 4363 9491 6980 1333 1241 217
Spatial edge 688 919 1789 2361 147 414 62

Misclassifications due to geolocation errors might be challenging for pixel-based
accuracy assessment, when the reference and product pixels are not perfectly lined up [34].
However, the other method of using block units such as with 3 × 3 pixels instead of a
single pixel was criticized by [38] since the accuracy for such block units does not represent
the accuracy of the map provided to users. In our study, we chose to perform our analysis
at pixel level. In the next sections we investigated the selected products. The product
selection criteria were based on the LCMAP reference dataset characteristics such as cell
size, temporal availability and class definitions.

2.2. Global Multi-Class LCLU Products

The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC) are the first 30 m resolution global land cover maps produced by Department of
Earth System Science of Tsinghua University using Landsat Thematic Mapper (TM) and
Enhanced TM plus (ETM+) data with a total number of 8929 scenes. The FROM-GLC
product was generated by four classifiers, namely a conventional maximum likelihood
classifier (MLC), a J4.8 decision tree classifier, a Random Forest (RF) classifier and a support
vector machine (SVM) classifier with the highest overall classification accuracy of 64.9%
produced by SVM and second high of 59.8% by RF [15]. It developed a unique land cover
classification scheme which is able to be cross-walked to the existing United Nations Food
and Agriculture Organization (FAO) land cover classification scheme and the International
Geosphere-Biosphere Program (IGBP) scheme and it includes two levels of classification
with 10 level-1 classes and 29 level-2 classes for years of 2010, 2015 and 2017 [15,39]. In this
study, we chose data for the years 2010 and 2015 so that they can be comparable to other
products available in the same years. We excluded the year 2017 since it is close to 2015;
we evaluated products using a common temporal baseline with a 5-year interval starting
from 1990.

GlobeLand30 is a 30 m resolution global land cover data product under the ‘Global
Land Cover Mapping at Finer Resolution’ project that was developed by the National
Geomatics Center of China (NGCC). The GlobeLand30 product has been produced for two
years of 2000 and 2010 [40] and was produced based on more than 10,000 scenes primarily
from the Landsat Thematic Mapper (TM) and Enhanced TM plus (ETM+) satellites. Images
from the Chinese Environmental and Disaster (HJ-1) satellite were also considered for the
year of 2010. Unlike FROM-GLC, a pixel-object-knowledge-based (POK-based) classifica-
tion approach was implemented to create this product achieving an overall accuracy of
over 80% [17,41]. GlobeLand30 adopted a classification scheme with 10 land cover types:
water bodies, wetlands, artificial surfaces, cultivated lands, forests, shrublands, grasslands,
and barren lands [17,42]. In this study, we choose both years of 2000 and 2010 data to
compare spatially and temporally with other products.
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ESRI ‘s Sentinel-2 10 m land cover time series product provides annual global LCLU
maps from 2017 to 2021. The Impact Observatory’s deep learning AI land classification
model was used to create the products. It is trained on a very large reference dataset
comprised of over 24,000 5 km × 5 km Sentinel-2 image patches with resolution of 10 m.
It contains ten classes, namely water, trees, grass, flooded vegetation, crops, scrub/shrub,
built area, bare ground, snow/ice, and clouds [18]. Data were collected across 14 major
biomes employing a random stratified sampling approach. An overall accuracy of 85% was
achieved over a set of tiles labeled by multiple expert annotators over 409 5 km × 5 km
sample areas.

World Cover is a global land cover product developed by the European Space Agency
at 10 m resolution based on both Sentinel-1 and Sentinel-2 data with eleven classes (Built-up,
Cropland, Grassland, Shrubland, Moss and lichen, Tree cover, Permanent water bodies,
Herbaceous wetland, Mangroves, Snow and Ice, and Bare). The ESA World Cover product
provides two years of global land cover data: 2020 and 2021 and it uses a random forest
classification tree algorithm with a global overall accuracy of 74.4% for 2020 and 76.7% for
2021 using an independently validation product [20].

Dynamic World is the first near real-time global LCLU product. It is developed
by Google at 10 m resolution based on Sentinel-2 data, and it delivers near real-time
LCLU products in parallel with Sentinel-2 acquisitions (every 5 days). It is based on
deep learning models with a training data over 5 billion hand labeled pixel patches from
24,000 individual image tiles (510 × 510 pixels each) with resolution of 10 m distributed
over the world which is the same reference dataset of Esri’s product. Other than single pixel
labels, annotators use dense markup of vector boundaries around individual classes. It
includes nine classes: water, trees, grass, flooded vegetation, crops, scrub/shrub, built area,
bare ground, snow/ice [21]. 1636 tile annotations over 409 Sentinel-2 tiles were created
for validation and DW was compared with expert annotations with an average overall
accuracy of 73.8%.

2.3. Global Single-Class LCLU Products

The Global surface water dynamics (GSWD) product offers the first sample-based
global estimates of open surface water extend and change. It is produced by the Global
Land Analysis and Discovery (GLAD) laboratory of the University of Maryland. The
classification uses the entire Landsat 5, 7, and 8 archive from 1999 to 2018 and an ensemble
classification tree method. A time-series analysis is performed to produce products that
characterize inter-annual and intra-annual open surface water dynamics [43,44]. It provides
five products in 10◦ × 10◦ tiles at 30m resolution for free downloading including monthly
water percent and annual water percent maps. The overall user’s and producer’s accuracies
of water are 92.1% (±1.6%) and 98.6% (±0.6%) [43]. In our study, we created water binary
maps with different water percent thresholds from 5% to 100% with a 5% interval for the
years of 2000, 2010 and 2015.

The Global Artificial Impervious Areas (GAIA) product is produced by Department
of Earth System Science of Tsinghua University with 30 m resolution annual impervious
maps over 30 years using the full archive of Landsat data from 1985 to 2018 on the Google
Earth Engine platform [45]. An automatic mapping procedure on the Google Earth En-
gine (GEE) platform was developed to implement the global-scale mapping of annual
artificial impervious areas. It achieves an overall accuracy of 89% based on 500 validation
points in 2015 and the mean overall accuracy is higher than 90% from 1985 to 2015 with
a 5-year interval [44,45]. In this study, maps with the years of 1990, 2000, 2010 and 2015
were included.

The Hansen global forest change (HGFC) product is produced by the Global Land
Analysis and Discovery (GLAD) laboratory of the University of Maryland. It provides
global forest extent and change from 2000 through 2021 in 10◦ × 10◦ tiles at 30 m resolution
based on time-series analysis of Landsat images. The product contains 6 sub products,
namely Tree canopy cover for year 2000 (treecover2000), Global Forest cover gain 2000–2012
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(gain), Year of gross forest cover loss event (lossyear), Data mask (datamask), Circa year
2000 Landsat 7 cloud-free image composite (first), Circa year 2019 Landsat cloud-free image
composite (last). Among them, treecover2000 is a percentage product while the gain and
loss year are classification products. A decision tree was used to create the tree-cover
percentage, forest loss, and forest gain training data, and for the tree-cover and change
products, a bagged decision tree methodology was used. The overall accuracy of loss
and gain from 2000 to 2012 is 99.6% and 99.7% based on 1500 validation points at global
scale [46]. In our study, forest maps of 2000 and 2012 were incorporated since forest cover
maps for the year 2012 based on forest cover gain 2000–2012 data.

2.4. US-Specific Multi-Class LCLU Products

The National Land Cover Database (NLCD) is updated every five years for the time
period of 2001 to 2019, and the earliest product is NLCD 1992, which was the first 30 m reso-
lution land cover product for the continental United States [47]. It is generated by the Earth
Resources Observation and Science (EROS) center in cooperation with the Multi-Resolution
Land Characteristics Consortium (MRLC). The NLCD has a two-level classification scheme,
a modified Anderson Land Cover Classification System [48] and it employs a decision-tree
classifier, SEE 5 [49]. For overall accuracy of NLCD products, Level I accuracy is reported
at 80.4–90.6% while level II accuracy is 78.8–83.7% based on varied number of validation
points [50–53]. We choose maps with years of 1992, 2001, 2011 and 2016 in this study.

The Land Change Monitoring, Assessment and Projection (LCMAP) is a new genera-
tion of land cover mapping and change monitoring from the U.S. Geological Survey’s Earth
Resources Observation. It generates annual land cover and land change products at 30 m
resolution for the conterminous United States (CONUS) from 1985 to 2021. The LCMAP
products use scenes from the Landsat Collection 1 Analysis Ready Data (ARD) archive [54]
and the classification scheme is based on the Anderson Level I classification scheme [48]
which contains eight classes: Developed, Cropland, Grass/Shrub, Tree Cover, Wetland,
Water, Ice/Snow and Barren [24,34]. It is generated using an adaptation of the Continuous
Change Detection and Classification (CCDC) time series algorithm [55] with overall accu-
racy across all years of 82.5% using validation sample of nearly 25,000 points [34]. In this
study, LMCAP maps from the years of 1990, 1995, 2000, 2005, 2010 and 2015 were included.

2.5. US-Specific Single-Class LCLU Products

The Cropland Data Layer (CDL) is an annual crop-specific land cover data layer
for the continental United States created by the United States Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS). The CDL is generated from various
satellites such as AWiFS, Landsat TM and ETM+ and MODIS satellite data; the USDA Farm
Service Agency (FSA) Common Land Unit (CLU) and NLCD for ground truth and ancillary
data sources using a decision tree-supervised classification method with overall accuracy
of 91.65% for the year of 2009 with independent validation data (1,669,764 pixels) [56,57].
The CDL has more than 100 crop categories grown in the United States for the time period
of 1997 to 2021. However, the data did not cover all states until the year of 2008. Therefore,
we choose CDL data for the years of 2010 and 2015 in this study to be comparable with
other products. Table 3 shows a summary of the eleven included LCLU products including
sensor, spatial resolution, spatial extent, available years, included years, Multi/Single-class,
classes, classifier and reference.
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Table 3. Summary of the eleven LCLU products included in this study.

Products Esri WC DW GlobeLand30 FROMGLC NLCD LCMAP HGFC GSWD GAIA CDL

Sensor Sentinel 2 Sentinel 1/2 Sentinel 2
Landsat
TM/ETM+,
HJ-1

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+, OLI

Landsat TM,
ETM+ OLI,
AWiFS,
MODIS

Spatial
resolution 10 m 10 m 10 m 30 m 30 m 30 m 30 m 30 m 30 m 30 m 30 m

Spatial extent Global Global Global Global Global US-only US-only Global Global Global US-only
Available
Years

Annual
2017–2021 2020, 2021 Annual

2015–2022 2000, 2010 2010, 2015,
2017

92,200-1
4,6,8,11,13,16,19

Annual
1985–2021

Annual
2000–2021

Annual
1999–2018

Annual
1985–2018

Annual
1997–2021

Included Years 2018 2020, 2021 2018 2000,2010 2010, 2015 1992, 2001,
2011, 2016

1990, 1995,
2000,
2005,2010,2015

2000, 2012 2000, 2005,
2010, 2015

1990, 2000,
2010, 2015 2010, 2015

Multi/Single-
Class Multi Multi Multi Multi Multi Multi Multi Single Single Single Single

Classes 9 11 9 10

A unique land
cover
classification
scheme

Anderson
Level II

Anderson
Level I

Percent +
binary for gain
and loss

Percent binary 255

Classifier AI RF AI Pixel- and
object-based Various DT CCDC DT Tree-based Google Earth

Engine DT

Reference [18] [19] [21] [42] [15] [52] [34] [46] [43] [44] [56]

Note: AI = Artificial Intelligence method, RF = Random Forest, DT = Decision Tree, CCDC = Continuous Change Detection and Classification, Various = MLC, DT, RF and SVM,
MLC = Maximum Likelihood Classifier, SVM = Support Vector Machine.
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3. Methods
3.1. Classification Scheme Matching

The LCLU products in this study have different classification schemes; for example,
the classification schemes of NLCD and LCMAP are based on the Anderson Land Cover
Classification System; the FROM-GLC has a unique land cover classification scheme and
GlobeLand30 adopts a classification scheme with 10 land cover types. Both ESRI and DW
have 9 classes while WC has 11 classes. Based on the similarities of these classification
schemes, it is possible to compare the LCLU products by converting different classification
schemes to the common classification scheme of the reference dataset from LCMAP.

The definitions of reference LCMAP classes are shown in Appendix A, extracted from
published papers [34,58], LCMAP Science Product Guide [59] and LCMAP Data Format
Control Book [60]. In the class definitions, Grass/Shrub, Tree Cover and Barren have
defined minimum spatial presence thresholds; however, Developed, Cropland, Wetland
and Water classes do not.

To facilitate the comparative analysis, all product classification schemes were con-
verted to seven LCMAP reference classes: Developed, Cropland, Gras/Shrub, Tree cover,
Water, Wetland and Barren. Table 4 shows the classification schemes’ conversion table of
different products with their class names. Potential conversion issues which occurred as
they were mapped to the LCMAP reference dataset are noted under the corresponding
classes. Classes that are problematic after conversion are highlighted in gray at the table and
discussed below. Complete class definitions for each product are available at Appendix A.

NLCD is compatible to LCMAP since NLCD products were cross walked to a classi-
fication scheme similar to the Anderson Level 1 land cover [48], which can be compared
with LCMAP [24]. There are a few minor issues related to the minimum spatial presence
threshold differences for grass/shrub, tree cover and barren as shown in Table 4. For
the FROM-GLC products, fruit trees are not included in cropland, and forest wetland is
not included in the wetland class. For barren land, it includes lake and river bottoms in
dry seasons. The thresholds for grasslands, shrublands, forest and barren land are not
provided. For the ESRI and the DW products, the minimum spatial presence thresholds
for grass/shrub, tree cover and barren are not provided. Crops at tree height such as fruit
trees are not included in crops. For grass/shrubs, DW includes parks, golf courses and
baseball fields which belong to the developed class in LCMAP’s definitions. For wetland,
ESRI excludes swamp forest and includes rice paddies and other heavily irrigated and
inundated agriculture, and DW excludes swamp forest. In LCMAP’s class definition,
swamp forest belongs to wetland while rice paddies are likely in the cropland class. For
barren, ESRI includes dried lake beds and mines, and similarly, DW includes dried lake
bottoms, mines, large empty lots in urban areas and large individual or dense networks
of dirt roads. For the WC product, the built-up class does not contain urban green (e.g.,
parks), which are assigned to the developed class in LCMAP’s developed class definition.
WC does not include perennial woody crops and greenhouses for cropland. The WC tree
cover class gives higher priority to trees since it includes trees mixed with other land cover
classes such as built-up and water. It also includes trees for afforestation purposes and
plantations such as oil palm and olive trees. For wetland, it excludes swamp forests. In the
continuous products GSWD and CDL offer a good match. For the HGFC product, orchards
are assigned as forest, while our reference labels them as cropland, similarly for trees mixed
with built-up, which is assigned as developed in our reference. For GAIA, the threshold for
impervious is 50%, while our reference assumes a 20% minimum spatial presence; this does
cause low-density impervious areas to be excluded in the GAIA product. The FROMGLC
2010 product required an additional processing step as a single ground location may have
multiple labels (from two to four with 6212 samples), a result of overlapping imagery each
classified independently. When multiple labels were available a majority rule was used
to assign the extracted label. When the majority could not be clearly defined a random
selection took place.
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Table 4. Conversion table of classification schemes of LCLU products and potential issues.

LCMAP NLCD FROM-GLC GlobeLand30 Esri Dynamic World World Cover

Developed Developed Impervious Artificial surfaces Built Area Built Area
Built-up
Urban green such as parks
not included

Cropland Planted/Cultivated

Cropland; Orchards *
Fruit trees not included,
classified as forests (except
for orchards)

Cultivated land
Crops
Crops at tree height not
included (e.g., fruit trees)

Crops
Crops at tree height not
included (e.g., fruit trees)

Cropland
Perennial woody crops and
greenhouses not included

Grass/Shrub
Shrubland; Herbaceous
20% vs. 10% LCMAP
threshold

Grasslands; Shrublands;
Tundra ˆ

Grassland; Shrubland;
Tundra Rangeland ˆ

Grass; Shrub/Scrub ˆ
Parks, golf courses, baseball
included but LCMAP
assigns them as Developed

Grassland; Shrubland;
Moss and Lichen

Tree cover
Forest
20% vs. 10% LCMAP
threshold

Broadleaf; Needleleaf;
Mixed Forest ˆ* Forest

Trees
Dense tall vegetation in
swamps or mangroves
included

Trees ˆ
Dense tall vegetation in
swamps or mangroves,
fruit trees included

Tree cover
Prioritizes trees, includes
trees present with other
classes (built-up, woody
crops, flooded trees)

Water Open Water * Waterbodies Water bodies Water Water Permanent waterbodies

Wetland Wetlands
Wetlands
Forest wetland not
included

Wetland

Flooded vegetation
Swamp forests not
included, includes heavily
irrigated and inundated
agriculture

Flooded vegetation
Swamp forests not included

Herbaceous Wetland;
Mangroves
Swamp forests not included

Barren
Barren
15% vs. 10% LCMAP
threshold

Barren land ˆ
Lake/river bottoms in dry
season included

Bare land
Saline/Alkaline land
included

Bare ground ˆ
Dried lake beds, mines
included

Bare ground ˆ
Dried lake bottoms, mines,
large empty urban lots, dirt
roads included

Bare/sparse vegetation

Note: ˆ Minimum spatial presence not provided; * Level II Class; Cells in grey do not allow comparisons as class definitions deviate substantially between product and reference.
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A different labeling approach was followed for the two single-class products (GSWD
and HGFC) that offer a continuous output, that is, the percent of presence of a given
class. Instead of selecting a certain percent threshold to convert the continuous output to a
binary label, we produced binary maps using different thresholds from 5% to 100% with an
interval of 5% for tree cover and water percentage products. For HGFC, a binary map was
generated for the year 2000 based on treecover2000 percentage layer. Then, a binary forest
map was produced for the year 2012 based on gain 2000–2012 and lossyear layer based
on three rules: (1) tree cover 2000 and no loss and no gain 2000–2012; (2) tree cover 2000
and loss in 2001–2012 and gain for 2012; and (3) not tree cover 2000 and gain in 2012. For
GSWD, binary maps were created using thresholds from 5% to 100% for the years 2000,
2005, 2010 and 2015.

3.2. Spatial Matching through Reprojection

Misregistration, especially in heterogeneous landscapes with a complex land cover
mosaic, can lead to considerable errors [61–66]. For the purposes of our study, coregistration
was considered a valid approach following similar processing as in other large scale LCLU
comparison studies [26,28,30,67,68]. To compare these products directly in a pixel-based
assessment, products that have different projections were converted to the referenced
projection. Specifically, the GlobeLand30, FROM-GLC, GSWD, GAIA, HGFC and CDL
were reprojected to projection of ‘Albers Conical Equal Area’ which is the projection of
the reference validation samples data. Esri, WC and DW were slightly different as they
have pixels with 10 m resolution instead of 30 m. They were reprojected to the reference
projection and resampled to the 30 m resolution using the majority rule. The workflow of
the methods used in this study is shown in Figure 1.
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3.3. Spatial Accuracy Assessment

Due to the large extent of the study area and the randomly distributed reference
dataset, we had the opportunity to go beyond aggregated statistical summaries and examine
accuracy behavior in a more spatially explicit manner. Two spatial segmentation methods
were employed: a grid-based and a polygon-based one. The grid size of agreement
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percentage maps was 200 km × 200 km, providing a balance between location specificity
and sufficient samples within each cell for trustworthy results. For the polygon-based
approach five general climatic zones covering CONUS were aggregated from the Köppen–
Geiger climate classes, as shown in Table 5. Köppen–Geiger climatic classes are used
for various applications and studies based on differences in climatic regimes, such as
ecological modeling or climate change impact assessments [69]. The zones were aggregated
based on climatic features so that each zone could contain sufficient number of reference
validation samples.

Table 5. Climate zones and corresponding class code.

# Group Description Corresponding
Köppen–Geiger Class Code

1 Temperate, no dry season 1, 2, 3, 14, 15, 16
2 Arid 4, 5, 6, 7
3 Temperate, dry summer 8, 9, 10
4 Cold, dry/hot summer 17, 18, 19, 21, 22, 25
5 Cold, warm/cold summer 26, 27, 29

Figure 2 shows the five aggregated climatic zones. The accuracy metrics used in this
study were User’s accuracy, Producer’s accuracy and F1 score. The User’s Accuracy is
the accuracy in view of the map user informing us how often the class on the map will
be shown on the ground. The Producer’s Accuracy is the accuracy in view of the map
producer, and it shows how often the objects on the ground are correctly presented on the
map. The F1 score combines the user’s accuracy and producer’s accuracy into a single
metric by taking their harmonic mean.
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4. Results and Discussion
4.1. Statistical Accuracy Assessment
4.1.1. Multi-Class Accuracy Assessment

The F1 score, user’s (UA) and producer’s (PA) accuracy were extracted from confusion
matrices and calculated by comparing reference sample labels and corresponding land cover
product labels. Table 6 shows the F1 scores for the thematic LULC products and Table 7
presents UAs and PAs of classes that are comparable among thematic LCLU products.

Table 6. F1 scores for LCLU products (gray cells are not comparable due to varying class definitions).

Products
F1 Score

Developed Cropland Grass/Shrub Tree Cover Water Wetland Barren

NLCD 1992 49.3% 73.2% 78.8% 81.0% 92.1% 62.6% 27.7%
NLCD 2001 70.3% 79.8% 83.4% 86.0% 95.6% 77.0% 55.1%
NLCD 2011 72.1% 80.7% 83.4% 85.2% 95.4% 76.9% 56.4%
NLCD 2016 72.1% 81.2% 83.6% 85.0% 95.5% 76.9% 56.2%
LCMAP 1990 68.2% 80.2% 83.6% 87.0% 94.6% 71.5% 47.2%
LCMAP 1995 69.4% 80.3% 83.9% 87.2% 94.5% 71.5% 48.5%
LCMAP 2000 70.1% 80.3% 84.0% 86.9% 94.6% 71.8% 48.2%
LCMAP 2005 70.1% 79.6% 83.9% 86.6% 94.2% 70.9% 49.5%
LCMAP 2010 69.8% 79.2% 83.6% 86.4% 94.3% 71.2% 50.0%
LCMAP 2015 69.5% 79.1% 83.4% 85.9% 94.4% 71.1% 50.1%
FROMGLC 2010 4.8% 35.5% 24.8% 63.2% 81.4% 5.5% 7.4%
FROMGLC 2015 45.3% 63.3% 68.9% 77.6% 91.1% 3.3% 16.5%
GlobeLand30 2000 54.5% 76.4% 79.6% 80.4% 76.1% 63.4% 35.7%
GlobeLand30 2010 56.2% 75.8% 79.5% 79.5% 76.0% 62.9% 37.2%
Esri 2018 70.8% 80.7% 80.8% 78.7% 94.5% 11.7% 49.5%
WC 2020 33.1% 86.3% 80.8% 83.0% 95.5% 18.2% 25.2%
WC 2021 34.1% 84.0% 78.9% 80.1% 94.3% 17.1% 27.6%
DW 2018 67.6% 77.0% 61.5% 79.7% 94.9% 8.0% 13.2%

Table 7. User’s and Producer’s Accuracy for comparable classes of LCLU products (Wetland and
Barren are excluded).

User’s Accuracy Producer’s Accuracy

Developed Cropland Grass/Shrub Tree
Cover Water Developed Cropland Grass/Shrub Tree

Cover Water

NLCD 1992 74.6% 62.5% 85.4% 81.2% 92.7% 36.8% 88.3% 73.1% 80.8% 91.5%
NLCD 2001 67.8% 71.0% 87.2% 92.0% 96.7% 73.1% 91.2% 79.9% 80.8% 94.5%
NLCD 2011 71.2% 71.1% 86.4% 92.5% 96.2% 73.1% 93.3% 80.6% 79.0% 94.5%
NLCD 2016 71.7% 71.9% 86.4% 92.0% 97.1% 72.6% 93.3% 80.9% 78.9% 93.8%
LCMAP 1990 72.1% 70.6% 88.4% 90.1% 95.9% 64.6% 92.7% 79.3% 84.1% 93.3%
LCMAP 1995 75.5% 70.3% 88.7% 90.1% 96.1% 64.2% 93.6% 79.5% 84.5% 92.9%
LCMAP 2000 79.4% 70.0% 88.2% 90.4% 96.7% 62.7% 94.1% 80.2% 83.7% 92.5%
LCMAP 2005 81.2% 68.9% 87.7% 90.5% 96.1% 61.7% 94.2% 80.3% 83.1% 92.5%
LCMAP 2010 80.7% 68.5% 87.1% 90.6% 96.5% 61.5% 93.7% 80.3% 82.6% 92.3%
LCMAP 2015 83.1% 68.4% 86.8% 90.1% 96.8% 59.7% 93.9% 80.2% 82.1% 92.1%
FROMGLC 2010 38.2% 44.5% 60.0% 57.6% 80.0% 2.5% 29.6% 15.6% 70.0% 82.7%
FROMGLC 2015 91.6% 70.4% 68.1% 72.5% 90.6% 30.1% 57.4% 69.8% 83.5% 91.5%
GlobeLand30 2000 74.7% 64.8% 82.7% 83.9% 95.4% 42.9% 93.0% 76.7% 77.1% 63.3%
GlobeLand30 2010 80.6% 63.6% 82.3% 82.7% 95.7% 43.1% 93.7% 76.8% 76.6% 63.0%
Esri 2018 77.0% 74.2% 78.9% 79.2% 95.0% 65.5% 88.3% 82.8% 78.2% 94.1%
WC 2020 92.7% 89.0% 79.7% 72.0% 96.0% 20.9% 79.4% 78.0% 91.6% 92.6%
WC 2021 97.9% 90.8% 81.8% 74.6% 97.7% 19.9% 82.2% 79.8% 93.5% 93.3%
DW 2018 90.5% 70.9% 76.4% 73.8% 93.8% 53.9% 84.2% 51.5% 86.7% 96.0%

Looking at the F1 scores, the two USGS products, NLCD and LCMAP, clearly out-
perform other products, both in terms of individual class accuracy but also for accuracy
variability across classes as accuracy fluctuation is much lower across classes. This could be
attributed to multiple factors. These two products are designed and tested explicitly within
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the U.S., thus benefitting more targeted training samples and algorithms. Furthermore,
these products are not exclusively based on satellite observations. For example, the NLCD
integrates a wide range of ancillary data to improve accuracy, data such as National Eleva-
tion Dataset (NED) derivatives of slope, aspect, elevation, and topographic position, USDA
Natural Resources Conservation Service Soil Survey Geographic (SSURGO) database Hy-
dric Soils, National Agricultural Statistics Service (NASS) 2011 Cropland Data Layer (CDL),
National Wetlands Inventory (NWI) and nighttime stable-light satellite imagery (NSLS)
from the NOAA Defense Meteorological Satellite Program (DMSP) [22]. LCMAP also used
digital elevation models such as aspect, elevation, positional index, slope and Wetland
Potential Index to assist in wetland detection [24]. Below, a more detailed assessment is
provided using the UA and PA metrics for individual classes.

Developed. Overall, UAs are higher than PAs for these products. WC 2021 has the
highest UA of 97.9% which is higher than the reported UA of 65.9%, and WC 2020 has the
second highest UA, which is also better than the reported UA of 67.7%; however, the PAs
of around 20% are much lower than the reported PAs (67.9%, 73.2%) [19,20]. One reason
for the low PA is that WC doesn’t include urban green, such as parks, in the built-up
class as shown in Table 3. NLCD has the highest PA of 73.1%, which is lower than the
reported range of 85.8–89%, and UAs (64.8–74.6%) are also lower than the reported range of
76.4–91% [50,53]. FROMGLC 2015 has a high UA of 91.6%; however, FROMGLC 2010 has
the lowest UA of 38.2%, which is still higher than the reported UA range of 6.22–30.8%. PA
of FROMGLC 2010 is lower than the reported range of 10.5–33.5% [15]. UA of DW exceeds
90% and it is within the reported range of 85.9–96.7%; however, its PA (53.9%) is lower than
the reported PA of 88.1–95.3% [21]. Globleland30 has UAs lower than the reported UA of
86.7% [17]. PA of Globeland30 is not compared as there is no reported PA for Globeland30.
UA of Esri is lower than the reported UA of 95.8%, while PA of Esri is within the reported
range of 36.7–94.2% [18]. UAs and PAs of LCMAP contain a reported UA of 77% and PA
of 63% [34]. Some products such as NLCD, FROMGLC and DW may have lower than
reported PAs due to unclear minimum spatial presence thresholds, both for the products
and the reference data.

Cropland. In general, PAs of cropland are higher than UAs. WC 2021 has the highest
UA (90.8%), and WC 2020 has the second highest UA (89.0%) which are both higher than
the reported UAs (80.6%, 81.1%), PAs also exceed reported PAs (76.7%, 79.3%) [19,20].
Although Esri has a relatively high UA (74.2%), it is lower than the reported UA of 90.7%,
while the PA is within the reported range of 57.6–96.4% [18]. DW has UA of 70.9%, lower
than the reported UA range of 86.9–97.1%; however, the PA of 84.2% is higher than the
reported range of 57.5–74.7% [21]. UA of FROMGLC 2010 is within the reported range
of 29.9–45.3%, and PA of 29.6% is also within the reported range of 25.1–39.2%. Both UA
and PA of FROMGLC 2015 are higher than these of FROMGLC 2010 [15]. NLCD has UAs
around 71% except for NLCD 1992, which are lower than the reported UAs of 85.8–89.0%;
however, the PAs of over 91% are higher than the reported PAs 86.0–87.0% [50,53]. LCMAP
has UAs of 68.4–70.3%, covering the reported UA of 70%, and PAs (92.7–94.2%) are also
compatible to reported PA of 93% [34]. Globeland30 has the lowest UAs of around 64%
which are lower than reported UA of 82.8%, while it has high PAs of over 93% [17].

Grass/Shrub. The UAs are higher than PAs for most products. LCMAP has the highest
UA (88.7%) which is close to the reported UA of 88.0%, and PAs are also similar to the
reported PA of 80.0% [34]. Esri has the highest PA of 82.8% and is in the reported range
of 12.2–93.1%. Our UA of 78.6% is higher than the reported grass UA of 38.5%, but lower
than the reported scrub UA of 83.1% [18]. NLCD also have high UAs (85.4–86.4%) which
are higher than the reported range of 63.0–67.0% for shrubland and herbaceous. However,
PAs of 73.1–80.9% are within the range of 67.0–81.0% [50,53]. Globeland30 has UAs around
83.0% higher than the reported UA of 72.6% for shrubland and 72.2% for grassland [17].
WC has UAs over 79.0%, higher than the reported UAs of 38.6–71.9% for grassland and
shrubland. WC has PAs over 78.0%, also higher than the reported PAs of 44.1–66.7% [19,20].
DW has UA of 76.4% higher than the reported UAs of 28.8–64.9% for grass and shrub/scrub,
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and 51.5% PA is within the reported range of 44.7–61.7% [21]. FROMGLC 2010 has UA of
60% which is higher than the reported range of 26.1–49.7%, while PA of 15.6% is lower than
the reported PA of 27.7–34.9%. FROMGLC 2015 has higher UA and much higher PA of
69.8% [15].

Tree cover. NLCD, LCMAP, Globleland30 and Esri have higher UAs than PAs, while
FROMGLC, WC and DW have lower UAs than PAs. NLCD has the highest UAs around
92.0% close to the reported range of 87.4–62.0%, and PAs (78.9–80.0%) are within the
reported range of 76.0–80.0% [50,53]. LCMAP has UAs close to the reported 90.0% and
PAs (82.1–84.5%) contains a reported PA of 83% [34]. Gloleland30 has UAs similar to
the reported UA of 83.6%, and the PAs around 77.0% are lower than UAs [17]. Esri has
79.2% UA lower than the reported UA of 90.3%, and 78.2% PA is also below the reported
range of 81.7–97.8% [18]. WC has UAs of 72.0% and 74.7%, lower than the reported UAs of
80.8% and 80.0% for 2020 and 2021, respectively; however, it has the highest (93.5%) and
second highest (91.6%) PAs which are higher than reported PAs of 89.9% and 91.9% [19,20].
DW’s UA of 73.8% is in the reported range of 69.5–87.5% and PA (86.7%) is also in the
reported range of 69.5–87.5% [21]. FROMGLC 2010′s UA of 57.6% is lower than the reported
range of 77.7–80.5%, while PA of 70.0% is in the reported range of 56.7–76.5% [15]. Similar
to other classes, FROMGLC 2015 has higher UA and PA than FROMGLC 2010 for tree cover.

Water. Overall, the UAs are similar to PAs with high values over 90% for most products
except for FROMGLC 2010 (UA) and Globeland30 (PA). WC 2021 has the highest UA (97.7%)
higher than the reported UA of 89.4%. The UA of 96.0% for WC 2020 is also higher than
the reported UA (88.5%). PAs of 92.6% and 93.3% are also higher than the reported PAs of
85.0% and 86.4% for the two years [19,20]. DW has the highest PA of 96.0%, which is within
the reported range of 94.1–96.80%. The UA of 93.8% is also within the reported range of
87.7–98.6% [21]. LCMAP has UAs close to the reported UA of 96.0% and PA of 93.0% [34].
NLCD has UAs in range of 92.7–97.1% similar to the reported range of 92.0–94.1%, and
PAs (91.5–94.5%) are also close to the reported range of 82.0–94.0% [50,53]. Globeland30
has UAs over 95.0% higher than reported UA of 84.7%, while PAs around 63.0% is lowest
among all products [17]. Both UA (80.0%) and PA (82.7%) of FROGLC 2010 are within the
reported ranges of 67.2–80.6% for UAs and 81.1–88.8% for PAs [15]. FROMGLC 2015 has
higher UA and PA over 90.0%. Esri’s UA of 95.0% is higher than the reported UA of 83.0%,
while the PA of 94.1% is close to the reported range of 82.3–94.0% [18].

A recent study compared the three global products of Esri, WC and DW using the
ground truth validation dataset of the Dynamic World team [70]. The study quantified
accuracies of the three products by continents. Here, the UAs and PAs of the continent of
North America are compared with our results. For the water class, our UAs and PAs are
similar to those in the study. For tree cover, our UAs are lower than those of the study by
6.0% to 9.2%, while our PAs of WC and DW are higher than PAs of the study by 1.6% and
4.7%, respectively, while our PA of Esri is 5.8% lower than that of the study. For developed,
both UAs and PAs are lower than those of the study with ranges between 2.5% to 7.0%,
and 29.1% to 37.1%, respectively. For cropland, our UAs are lower with a range of 5.0% to
16.1%, while PAs are higher with a range of 12.3% to 26.4%. For grass/shrub, the study
reported accuracies separately for two classes: grass and shrub & scrub. Our UAs and PAs
are both largely higher than those of study. For example, our UAs are higher than those of
study with ranges of 58.9% to 64.7% for grass, and 12.7% to 28.9% for shrub & scrub, and
our PAs are higher than those of study with ranges of 31.0% to 67.8% and 4.8% to 41.0% for
the two classes, respectively. Except for grass/shrub class, the main difference between
the two results are PAs for developed class, followed by cropland, which has differences
of over 10%. A possible reason for the difference is the creation of the validation datasets.
The aforementioned study used validation data generated by the Dynamic World team
annotating around 24,000 individual image tiles of 510× 510 pixels from Sentinel-2 imagery
from random dates in 2019 following typology definitions of the DW product. LCMAP
employed a team of interpreters assigning the class labels of approximately 25,000 reference
sample pixels by following a common response design using a special reference data
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collection tool called TimeSync which shows all available Landsat data. Another important
distinction is the minimum mapping unit (MMU). The image tiles of the Dynamic World
validation data have an MMU of 50 × 50 m while LCMAP uses 30 × 30 m. The smaller
LCMPA MMU offers much higher confidence in the obtained results, especially considering
that multiple classes have a minimum spatial presence threshold, which could thus be
easily mislabeled as the MMU increases.

Accuracy across time. To the best of our knowledge, our work is the first to assess
the accuracy of different medium resolution LCLU products across time. Compared
with WC 2020, the reported accuracy of WC 2021 has small improvements by upgrading
algorithm from v100 to v200 [19]. However, our results show that the F1 score of cropland,
grass/shrub, tree and water for WC 2020 is lower than that of WC 2021. WC 2021 is higher
in developed and barren areas than WC 2020. In reported UAs, tree cover, crop and built-up
areas of 2020 have higher UAs than those of 2021. One possible reason is that the v200
algorithm improved the performance in some classes, which are difficult to classify in v100,
but deteriorates the performance of other classes in the CONUS region. Another possible
reason is that samples of the year 2018 were used as reference validation to compare the
two WC products, thus slightly favoring the WC 2020. In Table 5, other products display
accuracy consistency. NLCD products have similar F1 scores over the years, excluding the
F1 score of NLCD 1992, a product of known lower quality [50,71]. LCMAP products have
stable F1 scores from 1990 to 2015, a reflection of the consistent methods employed across
time. Globleland30 also shows similar F1 scores between 2000 and 2010. FROMGLC is the
only product showing considerable accuracy improvement over time. However, this is
attributed to the particularly low accuracy of the FROMGLC 2010 product. First, FROM-
GLC has considerable confusion among land cover classes of agriculture lands, grasslands,
shrublands and barren land due to the lack of temporal features as inputs [16]. Second,
results of accuracies by continents indicate that the accuracy of North America is lower than
the global accuracy. Third, the multiple labels for some pixels with overlapping imagery
(at scene edges) decreases accuracy as each image is classified independently.

Accuracy over spatial edge samples. To understand how the LCLU products perform
in more challenging classification scenarios, Table 8 summarizes accuracy performance ex-
clusively on the spatial edge samples. Table 9 shows the difference in accuracy performance
between spatial edge samples and spatial non edge samples. It is not surprising to see that
the accuracy of all products decreases. For some classes, the NLCD/LCMAP products do
not offer the highest accuracy anymore, instead being overtaken by other products. For
grass/shrub and tree, the highest F1 score changes from LCMAP in Table 6 to WC in Table 8.
There are two possible reasons for WC’s improved performance over challenging samples.
First, besides auxiliary data, WC has extracted a total of 131 features based on Sentinel-2
multispectral image data and Sentinel -1 C-band Synthetic Aperture Radar (SAR) data. For
example, long range averaged timestamps feature from Sentinel -2 NDVI timeseries and
Sentinel-1 backscatter time series [19], which may help achieve better performance over
edge samples. Second, WC applied expert rules for map generation. Some of the expert
rules use auxiliary datasets such as OpenStreetMap [72], Global Surface Water Explorer [73],
Global Mangrove Watch [74], Global Human Settlement Layer [75], AgERA5 historic and
near real-time weather data in order to produce a better final prediction. The Esri product
is also better than NLCD/LCMAP products in cropland and grass/shrub. It utilized a
large training dataset with over 5 billion pixels while LCMAP used a much smaller training
dataset. Algorithmically, the Esri product is based on a convolutional neural network which
was originally developed for image segmentation tasks, which can learn both spectral and
spatial features. The Esri product also utilized a categorical cross entropy loss function to
account for class imbalance. The deep learning algorithm supported with large training
data is a possible reason for Esri’s better accuracy since AI algorithms tend to outperform
traditional machine learning algorithms in image processing domains [76,77].
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Table 8. F1 scores of LCLU products using spatial edge reference samples.

Products
F1 Score

Developed Cropland Grass/Shrub Tree Cover Water Wetland Barren

NLCD 1992 22.8% 51.4% 50.2% 70.1% 62.7% 35.4% 19.0%
NLCD 2001 57.5% 55.9% 51.8% 74.4% 70.6% 58.3% 45.9%
NLCD 2011 58.8% 55.6% 52.7% 72.6% 68.8% 58.3% 46.4%
NLCD 2016 59.3% 56.0% 51.6% 71.3% 66.9% 57.9% 46.3%
LCMAP 1990 53.2% 61.2% 59.3% 77.6% 60.6% 47.9% 47.1%
LCMAP 1995 54.1% 60.4% 58.7% 77.5% 59.8% 47.8% 45.2%
LCMAP 2000 53.7% 59.1% 58.1% 76.6% 62.5% 48.2% 48.7%
LCMAP 2005 53.0% 57.1% 57.6% 76.2% 59.1% 47.0% 45.8%
LCMAP 2010 52.9% 55.7% 57.3% 75.4% 60.7% 47.3% 47.1%
LCMAP 2015 52.0% 54.9% 56.3% 74.6% 60.3% 47.2% 47.4%
FROMGLC 2010 1.5% 26.9% 19.0% 60.1% 37.7% 3.3% 14.9%
FROMGLC 2015 18.1% 41.9% 52.7% 70.5% 52.4% 0.5% 31.7%
Globeland30 2000 24.2% 52.0% 50.2% 66.7% 50.0% 31.9% 31.3%
Globeland30 2010 26.4% 49.1% 49.4% 65.0% 49.1% 30.7% 31.1%
Esri 2018 57.0% 61.6% 59.5% 72.0% 67.1% 9.7% 55.2%
WC 2020 17.8% 69.3% 63.7% 78.3% 66.9% 8.4% 32.0%
WC 2021 16.6% 60.1% 57.6% 74.1% 57.5% 7.5% 40.3%
DW 2018 50.7% 64.7% 53.4% 74.6% 72.3% 7.5% 32.4%

Table 9. F1 scores difference between spatial edge reference samples and non-edge samples.

Products
F1 Score

Developed Cropland Grass/Shrub Tree Cover Water Wetland Barren

NLCD 1992 −51.34% −29.78% −34.64% −16.70% −32.69% −40.41% −12.52%
NLCD 2001 −31.95% −31.34% −38.13% −17.58% −27.88% −29.80% −14.73%
NLCD 2011 −32.62% −32.47% −37.25% −18.96% −29.76% −29.67% −15.84%
NLCD 2016 −31.54% −32.60% −38.82% −20.48% −31.79% −30.42% −15.51%
LCMAP 1990 −31.92% −25.43% −29.66% −14.33% −37.34% −36.35% −0.15%
LCMAP 1995 −32.89% −26.54% −30.66% −14.73% −38.37% −36.52% −4.80%
LCMAP 2000 −35.19% −28.29% −31.53% −15.71% −35.67% −36.27% 0.72%
LCMAP 2005 −36.16% −29.91% −31.89% −15.93% −38.98% −36.86% −5.36%
LCMAP 2010 −36.40% −31.10% −32.01% −16.70% −37.46% −36.76% −4.20%
LCMAP 2015 −37.25% −32.06% −32.96% −17.07% −36.87% −36.82% −3.90%
FROMGLC 2010 −7.20% −11.54% −7.17% −4.72% −48.76% −3.24% 8.87%
FROMGLC 2015 −53.37% −27.12% −20.77% −10.86% −42.73% −4.16% 17.41%
Globeland30 2000 −57.98% −33.25% −36.08% −20.82% −29.13% −46.60% −6.31%
Globeland30 2010 −57.40% −36.14% −36.85% −22.19% −30.07% −47.24% −8.55%
Esri 2018 −30.33% −24.61% −26.04% −10.41% −31.06% −2.91% 7.74%
WC 2020 −32.45% −20.89% −21.28% −7.46% −31.66% −14.22% 8.80%
WC 2021 −36.72% −29.35% −26.55% −10.27% −40.93% −13.97% 15.77%
DW 2018 −35.07% −15.21% −10.11% −8.16% −25.71% −0.74% 21.67%

4.1.2. Single Class Accuracy Assessment

The single-class LULC products can either be directly compared with our reference
data when they offer a classification output (GAIA and CDL products), or their continuous
outputs can be converted to a binary classification by applying a threshold (HGFC and
GSWD products).

The accuracy metrics and corresponding confusion matrix for GAIA and CDL are
presented below in Tables 10 and 11. Table 11 shows a potential issue of class imbalance for
the two single-class products. However, this class imbalance is a reflection of class presence
across CONUS, as the original reference dataset used a random sampling distribution.
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Table 10. Summary of F1 scores for GAIA and CDL products.

Single-Class Maps F1_score_class User’s Accuracy Producer’s Accuracy

GAIA 1990 40.0% 87.4% 25.9%
GAIA 2000 44.5% 89.1% 29.7%
GAIA 2010 46.6% 89.7% 31.5%
GAIA 2015 49.2% 88.6% 34.0%
CDL 2010 61.2% 65.1% 57.8%
CDL 2015 62.8% 65.8% 60.0%

Table 11. Confusion table for GAIA and CDL products (NC = Non-Class, C = Class).

GAIA 1990 GAIA 2000 GAIA 2010 GAIA 2015 CDL 2010 CDL 2015

NC C NC C NC C NC C NC C NC C

NC 23910 38 23744 43 23583 48 23534 60 19353 1329 19242 1361
C 754 264 829 350 915 420 905 467 1808 2476 1745 2618

First, examining the binary GAIA product that captures the developed class, GAIA
2010 has the highest UA of 89.7% and GAIA 2015 has the highest PA of 34.0%. These
numbers are significantly lower than the reported UA of 99% and PA of 78% to 94% [44].
The considerably lower producer accuracy can be partially, but not completely, attributed
to class definition differences. The GAIA product uses a 50% minimum spatial presence
threshold, thus missing some developed areas that are included in the reference dataset
that uses a 20% value.

Looking at the cropland binary classification, CDL has similar UA and PA estimations.
CDL 2015 has the highest UA (65.8%) and PA (60.0%) which are considerably lower than the
reported UA and PA of 85% to 95% for major crop categories [56]. The reported accuracy is
estimated only on major crop categories (corn, soybeans and winter wheat), thus excluding
other crops with lower classification accuracies that are included in the reference dataset.

For the two continuous products of HGFC (forest) and GSWD (water), multiple
minimum spatial presence thresholds were tested to convert them to a binary classification.
The reference data of LCMAP class definitions use a threshold of 10% for tree cover, while
there is no clear threshold for water. In this study, we used thresholds from 5% to 100%
with a 5% interval for HGFC and GSWD. Figure 3 shows the relationship between F1 score
and thresholds of tree cover class by comparing HGFC with reference samples for the years
2000 and 2012. The F1 score gradually decreases as the threshold increases. The highest F1
score (80.8%) is achieved for a 10% threshold. The HGFC has the highest UA of 87.6%. The
reported UA and PA are only available for forest loss and gain. For forest loss, UA and PA
are reported as greater than 80%, and for forest gain, UA is 82% and PA is 48% [46]. Most
notably, when compared with multiclass products in Table 6, the highest HGFC accuracy
of 80% is lower than the F1 score for the NLCD and LCMAP products (85–87%); thus, the
one class-targeted classification does not offer observed benefits. The one case where the
HGFC product could be useful is when application needs dictate the use of a specific (and
different to the 10%) minimum spatial presence threshold—with the caveat that for high
threshold values, the F1 accuracy for the forest class sharply decreases.

Figure 4 shows the relationship between F1 score and thresholds of water class by
comparing the GSWD with reference data samples for the years of 2000, 2005, 2010 and 2015.
Differing from the behavior of the HGFC, the F1 score of water increases at first and then
decreases as the threshold increases with higher F1 scores achieved for 50% to 80% thresh-
olds. The GSWD achieves the highest UA of 98.2%, which is higher than the reported UA
of 92.1% and our highest PA of 99.1%, and it is slightly higher than the reported PA of
98.6% [43]. Overall, the GSWD product obtains a similar accuracy of 95% over different
years, and it is close to the highest accuracy of multiclass products.
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4.2. Spatial Accuracy Assessment

The five recent and most accurate LCLU products offering a balance of global and
regional LCLU products were assessed further to understand regional accuracy differences.
The assessment included the average F1 accuracy calculated on the five comparable classes
only: developed, cropland, grass/shrub, tree cover and water.

4.2.1. Grid-Based Accuracy Distribution

Figure 5 shows the spatial agreement percentage maps for a 200 km cell size. Only
cells with 50 or more samples were included; therefore, some cells on the external border
are excluded. Different patterns of spatial agreement can be observed. DW struggles in the
west, where WC 2021 also has difficulty but to a lesser degree. The Esri product also shows
minor issues on the west. The LCMAP and NLCD show a different pattern with lower
accuracies mainly in the middle and southeast but overall smaller accuracy variability
across space, which is a desired outcome.
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An important question is whether the observed accuracy variability is a result of
limitations in Landsat data availability. Figure 6 below is adapted from [78], a study that
looked explicitly in cloud-free image availability. There does not seem to be a visual
correlation between areas of lower Landsat scenes such as the northeast and the spatial
error maps of Figure 5. This leads to the conclusion that it is not data availability that drives
these accuracy patterns.
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4.2.2. Climatic Zone Accuracy Distribution

Accuracies were also aggregated in the five climatic zones depicted in Figure 2. The
motivation behind this segmentation is that different climates may result in differences in
spectral-temporal separability among classes and/or different class proportion presence.
Table 12 shows that arid is the most inconsistent zone, having the highest F1 score of 83.6%
as well as the lowest (63.6%). The cold with warm/cold summer is the most consistent
zone, while the cold with dry/hot summer has generally higher F1 scores than others. The
cold climatic areas have higher accuracy consistency than others. Table 12 also shows that
the F1 score has no obvious relation to the sample size because Arid and Temperate/dry
summer have similar F1 scores but with largest and smallest sample numbers, respectively.

Table 12. F1 score for LULC products by climatic zones using developed, cropland, grass/shrub, tree
cover and water classes.

Products
Average F1 Score of Developed, Cropland, Grass/Shrub, Tree and Water

Temperate,
No Dry
Season

Arid Temperate,
Dry Summer

Cold,
Dry/Hot
Summer

Cold,
Warm/Cold

Summer

LCMAP 2015 71.7% 83.6% 81.2% 81.2% 76.3%
NLCD 2016 73.6% 82.8% 79.2% 81.4% 79.3%
ESRI 2018 77.6% 71.3% 77.1% 81.3% 77.2%
WC 2021 69.2% 76.7% 71.5% 72.1% 72.0%
DW 2018 77.9% 63.6% 74.7% 82.7% 78.2%
Samples 5213 8035 860 5409 3524
Samples/1000
km2 2.79 2.99 2.82 3.01 2.75

NLCD has the highest average F1 score (79.2%) over all zones. However, LCMAP and
DW have more individual class highest F1 scores than the NLCD. WC is more consistent
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than others, with DW being the least consistent. DW has the lowest F1 score in the arid
zone since it has substantial lower accuracy in cropland, grass/shrub and tree cover than
others (Appendix B). However, it has higher accuracy in grass/shrub than others in cold
with dry/hot summer and temperate/not dry season zones. LCMAP has the highest
F1 score in the arid zone since it is better in developed and tree cover than others. The
accuracy of LCMAP is also higher in developed, cropland and grass/shrub than others
in the temperate/dry summer zone. In general, DW has high accuracy in east areas
due to better performance in grass/shrub. LCMAP is better in western areas thanks to
developed class. In the temperate/not dry zone, with different types of forests, most
products have high accuracy in tree cover, but only DW has accuracy over 70%, while
LCMAP and NLCD have an accuracy of around 53%. One possible reason is that DW
utilized deep learning algorithms that allow better separation of trees with grass/shrub
than using traditional machine learning classifiers. Furthermore, the DW achieved much
higher accuracy (over 18%) than LCMAP and NLCD for the grass/shrub class in that
climatic zone. The temperate/not dry zone contains a variety of forbs, displaying different
appearances on the ground in different seasons, which is a difficult task for the LCMAP
and NLCD with traditional machine learning algorithms and an advantage of the DW
using deep learning algorithms. LCMAP has better performance in developed, arid and
temperate/dry summer zones, for which the possible reason is that LCMAP included
ancillary data in its inputs facilitating the classification of developed zones.

5. Conclusions

This study compared eleven global and regional LCLU products over the conterminous
U.S. to provide guidelines for suitable LCLU products by understanding their benefits and
limitations. The results show that the NLCD and LCMAP products outperform other multi-
class products not only for individual class accuracy but also for accuracy variability across
classes looking at F1 scores. More detailed results with UAs and PAs indicate that, for most
products, UAs are higher than PAs for developed and grass/shrub, while for cropland,
UAs are lower than PAs. LCMAP and NLCD are particularly suitable for applications
related to vegetation classes such as grass/shrub and tree cover in CONUS, since LCMAP
has the highest UA for grass/shrub and NLCD has the highest UA for tree cover.

Users should be cautious using the FROMGLC 2010 products, which have the lowest
UAs among the multi-class LCLU products. For single-class products, the binary GAIA has
considerably lower PA compared to the reported PA, partially attributed to class definition
differences. CDL also has lower UA and PA than reported accuracies which are estimated
only on major crop categories. Multiple minimum spatial presence thresholds were tested
for the two continuous products of HGFC (forest) and GSWD (water). The F1 score of
HGFC gradually decreases as the threshold increases, with the highest F1 score of 80.8% at
a 10% threshold, while the F1 score of GSWD increases at first and then decreases as the
threshold increases, with higher F1 scores achieved for the 50% to 80% thresholds. HGFC
and GSWD are relatively flexible to use depending on different needs since they can be
converted to binary products with different thresholds.

The performance of LCLU products in challenging classification scenarios was tested
using reference spatial edge samples. Results show that the accuracy of all products
decreases, and accuracy rank of products also changes. The highest F1 score accuracies of
grass/shrub and tree cover change from LCMAP and NLCD to WC. WC’s high accuracy
in spatial edge samples is attributed to the auxiliary data, a large number of extracted
features and expert rules for map generation. Esri is also better than LCMAP and NLCD
products in cropland and grass/shrub classes as it utilizes a deep learning algorithm with
a large training dataset. Users can take advantage of WC and Esri in these challenging
classification scenarios for cropland, grass/shrub and tree cover classes in recent years.
In addition, users who are interested in timely studies and applications can consider DW
since it is the only product generating near real-time LCLU maps.
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Results further indicate different patterns of spatial agreement and disagreement for
recent thematic LCLU products by visual comparison. DW struggles at the west part of
CONUS, where the WC and DW also have difficulty but to a lesser degree. The LCMAP and
NLCD display a different pattern with lower accuracies mainly in the middle and southeast
areas but overall smaller accuracy variability across space. As the accuracy varies among
the different LCLU products, it is possible to use merged data from different products for
training/validating a new classifier. In the future, different products could be combined
based on their spatial accuracy distribution patterns to create a merged product with higher
accuracy. For example, NLCD and LCMAP have relatively better performance in the west,
while DW and Esri have relatively higher accuracy in the middle and east. NLCD/LCMAP
could be integrated with Esri/DW using a rule-based approach driven by performance in
different areas to test potential benefits to LCLU classifiers over CONUS.

In this case, our study is a valuable reference for users who are interested in parts of
CONUS. Users can select LCMAP and NLCD in the west region and others in the east
part. LCMAP and NLCD are still good choices if the interest area is the entire CONUS.
The five LCLU products were also quantitatively compared using five aggregated climatic
zones. Overall, NLCD has higher average F1 scores than others over all zones. However,
LCMAP and DW demonstrate better performance than NLCD for some specific zones. For
example, users can take LCMAP in arid and temperate/dry summer zones and DW in
temperate/not dry and cold with dry/hot summer zones over NLCD. To help users who
are interested in different climatic zones understand them better, the arid zone is the most
inconsistent, and cold with warm/cold summer is the most consistent zone. The cold with
dry/hot summer has generally higher F1 scores than others. Results also show that the
F1 score has no obvious relation to the sample size, so users can choose products without
concerning about the area size of application or study.

An important limitation of multi-product comparison studies such as ours is that class
definitions vary across products, which makes comparisons challenging, or in the case of
the wetland and barren classes not feasible for some products. While target audiences may
differ across products, it is important to coordinate a common class definition scheme, at
least for level I Anderson classifications. Having a common classification scheme would:
(i) increase collaboration across efforts as training data could be shared, (ii) enable geo-
graphic areas of underperformance to be easily identified, leading to improved localized
solutions, and (iii) provide users with a better understanding of product limitations.
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Appendix A Product Class Definitions

The product class definitions are extracted from following papers:
LCMAP [34]; NLCD [52]; GlobeLand30 [42]; FROMGLC [15]; Esri [18]; World Cover [20];

Dynamic World [21]; Annual maps of global artificial impervious area [44]; Cropland Data
Layers [56]; Hanson Global Forest Change [46]; Global surface water dynamic [43]. Defini-
tions with ˆ represent classes that are not comparable due to substantial definition deviation.

Developed class definitions:
LCMAP: Developed—Areas of intensive use with much of the land covered with

structures (e.g., high density residential, commercial, industrial or transportation), or less
intensive uses where the land cover matrix includes vegetation, bare ground and struc-

https://www.sciencebase.gov/catalog/item/5e42e54be4b0edb47be84535
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tures (e.g., low density residential, recreational facilities, cemeteries, transportation/utility
corridors, etc.), including any land functionally related to the developed or built-up activity.

NLCD: Developed—Developed, Open Space: areas with a mixture of some constructed
materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account
for less than 20% of total cover. These areas most commonly include large-lot single-
family housing units, parks, golf courses and vegetation planted in developed settings for
recreation, erosion control or aesthetic purposes. Developed, Low Intensity: areas with a
mixture of constructed materials and vegetation. Impervious surfaces account for 20% to
49% percent of total cover. These areas most commonly include single-family housing units.
Developed, Medium Intensity: areas with a mixture of constructed materials and vegetation.
Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly
include single-family housing units. Developed, High Intensity: highly developed areas
where people reside or work in high numbers. Examples include apartment complexes,
row houses and commercial/industrial areas. Impervious surfaces account for 80% to 100%
of the total cover.

GlobeLand30: Artificial Surfaces—Land modified by human activities, including all
kinds of habitation, industrial and mining areas, transportation facilities and interior urban
green zones and water bodies, etc.

FROMGLC: Impervious—Primarily based on artificial cover such as asphalts, con-
crete, sand and stone, bricks, glasses and other cover materials. Impervious-high albedo—
Impervious road cover with high albedo materials (e.g., concrete, cement). Impervious-low
albedo—Impervious roof tops covered by low albedo materials (e.g., asphalts, black shingles).

ESRI: Built Area—Human-made structures, including major road and rail networks,
large homogenous impervious surfaces including parking structures, office buildings and
residential housing (e.g., houses, dense villages/towns/cities, paved roads, asphalt).

World Cover: Built-up—Land covered by buildings, roads and other man-made
structures such as railroads. Buildings include both residential and industrial buildings.
Urban green (e.g., parks, sport facilities) is not included in this class. Waste dump deposits
and extraction sites are considered as bare.

Dynamic World: Built area—Clusters of human-made structures or individual, very
large human-made structures, contained industrial, commercial, and private buildings,
and the associated parking lots. A mixture of residential buildings, streets, lawns, trees,
isolated residential structures or buildings surrounded by vegetative land covers. Major
road and rail networks outside of the predominant residential areas. Large homogeneous
impervious surfaces, including parking structures, large office buildings and residential
housing developments containing clusters of cul-de-sacs.

Annual maps of global artificial impervious area: Impervious—impervious when
impervious surface in a pixel account greater than 50%.

Cropland class definitions:
LCMAP: Cropland—Land in either a vegetated or unvegetated state used in produc-

tion of food, fiber and fuels. This includes cultivated and uncultivated croplands, hay lands,
orchards, vineyards and confined livestock operations. Forest plantations are considered as
forests or woodlands (Tree Cover class) regardless of the use of the wood products.

NLCD: Planted/Cultivated—Pasture/hay-areas of grasses, legumes or grass-legume
mixtures planted for livestock grazing or the production of seed or hay crops, typically on
a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.
Cultivated Crops—areas used for the production of annual crops, such as corn, soybeans,
vegetables, tobacco and cotton, and also perennial woody crops such as orchards and
vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class
also includes all land being actively tilled.

GlobeLand30: Cultivated land—Land used for agriculture, horticulture and gardens,
including paddy fields, irrigated and dry farmland, vegetable and fruit gardens, etc.

FROMGLC: Croplands—This type of land has clear traits of intensive human activity.
It varies a lot from bare field, seeding, crop growing to harvesting. It can be easily iden-
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tified if edges or textures are visible with sufficiently large land parcels. Fruit trees are
classified into forests. Bare field is classified into bare land. Pasture could be transitional
from croplands to natural grasslands. Rice fields—Land for rice cultivation. Greenhouse
farming—Land with plastic foam or grass roof protection with distinguishing spectral prop-
erties. Other croplands—This category includes arable and tillage land. Orchards—Parcels
planted with fruit trees or shrubs, consisting of single or mixed fruit species and fruit trees
associated with permanently grassed surfaces.

Esri: Crops—Human-planted/plotted cereals, grasses, and crops not at tree height
(e.g., corn, wheat, soy, fallow plots of structured land).

World Cover: Cropland—Land covered with annual cropland that is sowed/planted
and harvestable at least once within the 12 months after the sowing/planting date. The
annual cropland produces an herbaceous cover and is sometimes combined with some tree
or woody vegetation. Note that perennial woody crops will be classified as the appropriate
tree cover or shrub land cover type. Greenhouses are considered as built-up.

Dynamic world: Crops—Human-planted/plotted cereals, grasses, and crops.
Cropland Data Layers: Crop—agricultural categories are based on data from the Farm

Service Agency (FSA) Common Land Unit (CLU) Program. Thus, all crop-specific cate-
gories are determined by the FSA CLU/578 Program which offers detailed documentation
at the following website: https://www.fsa.usda.gov/programs-and-services/laws-and-
regulations/handbooks/index (accessed on 30 April 2023).

Grass/Shrub class definitions:
LCMAP: Grass/Shrub—Land predominantly covered with shrubs and perennial or

annual natural and domesticated grasses (e.g., pasture), forbs or other forms of herbaceous
vegetation. The grass and shrub cover must comprise at least 10% of the area and tree cover
is less than 10% of the area.

NLCD: Shrubland—Dwarf Scrub: Alaska-only areas dominated by shrubs less than
20 centimeters tall with shrub canopy typically greater than 20% of total vegetation.
This type is often co-associated with grasses, sedges, herbs and non-vascular vegeta-
tion. Shrub/Scrub: Areas dominated by shrubs and less than 5 m tall with shrub canopy
typically greater than 20% of total vegetation. This class includes true shrubs, young trees
in an early successional stage or trees stunted from environmental conditions. Herbaceous—
Grassland/Herbaceous: Areas dominated by graminoid or herbaceous vegetation, gen-
erally greater than 80% of total vegetation. These areas are not subject to intensive man-
agement such as tilling but can be utilized for grazing. Sedge/Herbaceous: Alaska-only
areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This
type can occur with significant other grasses or other grass like plants, and includes sedge
tundra and sedge tussock tundra. Lichens: Alaska-only areas dominated by fruticose or
foliose lichens generally greater than 80% of total vegetation.

GlobeLand30: Grassland Land—Covered by natural grass with cover over 10%, etc.
Shrub land—Land covered by shrubs with cover over 30%, including deciduous and
evergreen shrubs and desert steppe with cover over 10%, etc. Tundra—Land covered by
lichen, moss, hardy perennial herb and shrubs in the Polar Regions, including shrub tundra,
herbaceous tundra, wet tundra and barren tundra, etc.

FROMGLC: Grasslands—Pastures—Grasslands for grazing. Other grasslands—Natural
grasslands identifiable. Shrublands—Shrub cover identifiable in the image. Has a tex-
ture finer than tree canopies but coarser than grasslands. Tundra—Located at high
mountains above tree line and high latitude regions with low height vegetation. The
growing season is between 1 and 2 months. Shrub and Brush Tundra (=Shrublands)—
Dominated by low shrubs with grasses, lichens and mosses at the background. Herbaceous
Tundra—Dominated by various sedges, grasses, forbs, lichens and mosses, all of which
lack woody stems.

Esri: Rangeland—Open areas covered in homogenous grasses with little-to-no taller
vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted
field) (e.g., natural meadows and fields with sparse to no tree cover, open savanna with few

https://www.fsa.usda.gov/programs-and-services/laws-and-regulations/handbooks/index
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to no trees, parks/golf courses/lawns, pastures). Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings
within dense forests that are clearly not taller than trees (e.g., moderate to sparse cover of
bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants).

World Cover: Shrubland—This class includes any geographic area dominated by
natural shrubs having a cover of 10% or more. Shrubs are defined as woody perennial
plants with persistent and woody stems and without any defined main stem being less than
5 m tall. Trees can be present in scattered form if their cover is less than 10%. Herbaceous
plants can also be present at any density. The shrub foliage can be either evergreen or
deciduous. Grassland—This class includes any geographic area (e.g., grasslands, prairies,
steppes, savannahs, pastures) dominated by natural herbaceous plants (i.e., plants without
persistent stem or shoots above ground and lacking definite firm structure) with a cover
of 10% or more, irrespective of different human and/or animal activities, such as grazing,
selective fire management etc. Woody plants (trees and/or shrubs) can be present assuming
their cover is less than 10%. It may also contain uncultivated cropland areas (without
harvest/bare soil period) in the reference year. Moss and lichen—Land covered with
lichens and/or mosses. Lichens are composite organisms formed from the symbiotic
association of fungi and algae. Mosses contain photo-autotrophic land plants without true
leaves, stems, roots but with leaf- and stemlike organs.

Dynamic world: Grass—Open areas covered in homogenous grasses with little-to-no
taller vegetation. Other homogeneous areas of grass-like vegetation (blade-type leaves)
that appear different from trees and shrubland. Wild cereals and grasses with no obvious
human plotting (i.e., not a structured field). Shrub & Scrub—Mix of small clusters of
plants or individual plants dispersed on a landscape that shows exposed soil and rock.
Scrub-filled clearings within dense forests that are clearly not taller than trees. Appear
grayer/browner due to less dense leaf cover.

Tree Cover class definitions:
LCMAP: Tree Cover—Tree-covered land where the tree cover density is greater than

10%. Cleared or harvested trees (i.e., clearcuts) will be mapped according to current cover
(e.g., Barren, Grass/Shrub).

NLCD: Forest—Deciduous Forest: areas dominated by trees generally greater than 5 m
tall and greater than 20% of total vegetation cover. More than 75% of the tree species shed
foliage simultaneously in response to seasonal change. Evergreen Forest: areas dominated
by trees generally greater than 5 m tall and greater than 20% of total vegetation cover. More
than 75% of the tree species maintain their leaves all year. Canopy is never without green
foliage. Mixed Forest: areas dominated by trees generally greater than 5 m tall and greater
than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater
than 75% of total tree cover.

GlobeLand30: Forest—Land covered by trees, vegetation covers over 30%, including
deciduous and coniferous forests, and sparse woodland with cover 10–30%, etc.

FROMGLC: Forest—Trees observable in the landscape from the images. Forest has
a distinct canopy texture on TM images. Broadleaf forests—Usually higher reflectivity
than conifer species in the near infrared (NIR) spectral band. Shaded and sunlit sides
less contrast. Needleleaf forests—Lower reflectivity than broadleaf trees in the NIR band.
Mixed forests—Neither coniferous nor broadleaf trees dominate in a mixed forest stand.

Esri: Trees—Any significant clustering of tall (~15 feet or higher) dense vegetation,
typically with a closed or dense canopy (i.e., dense/tall vegetation with ephemeral water
or canopy too thick to detect water underneath) (e.g., wooded vegetation, clusters of dense
tall vegetation within savannas, plantations, swamp or mangroves).

World Cover: Tree cover—This class includes any geographic area dominated by
trees with a cover of 10% or more. Other land cover classes (shrubs and/or herbs in the
understory, built-up, permanent water bodies, etc.) can be present below the canopy, even
with a density higher than trees. Areas planted with trees for afforestation purposes and
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plantations (e.g., oil palm, olive trees) are included in this class. This class also includes tree-
covered areas seasonally or permanently flooded with fresh water except for mangroves.

Dynamic world: Trees—Any significant clustering of dense vegetation, typically with
a closed or dense canopy. Taller and darker than surrounding vegetation (if surrounded by
other vegetation).

Hansen global forest change: Tree cover—Tree canopy cover, defined as canopy closure
for all vegetation taller than 5 m in height.

Water class definitions:
LCMAP: Water—Areas covered with water, such as streams, canals, lakes, reservoirs,

bays or oceans.
NLCD: Water—Open Water: areas of open water, generally with less than 25% cover

of vegetation or soil.
GlobeLand30: Water bodies—Water bodies in land areas, including river, lake, reser-

voir, fishpond, etc.
FROMGLC: Waterbodies—All inland waterbodies with >3 pixels in width or

8 pixel × 8 pixel (6 ha) in area. Patches of fishponds are included in this category. Spectral
characteristics vary widely, and the waterbodies change in area with season. Lake—Natural
waterbodies. Reservoir/Pond—Dammed waterbodies. River—Natural or artificial wa-
tercourses serving as water drainage channels. Minimum width for inclusion 3 pixels.
Ocean—Saline water.

Esri: Water—Areas where water was predominantly present throughout the year.
May not cover areas with sporadic or ephemeral water and contains little-to-no sparse
vegetation, no rock outcrop nor built up features such as docks (e.g., rivers, ponds, lakes,
oceans, flooded salt plains).

World Cover: Permanent water bodies—This class includes any geographic area
covered for most of the year (more than 9 months) by water bodies, e.g., lakes, reservoirs
and rivers. Can be either fresh or salt-water bodies. In some cases, the water can be frozen
for part of the year (less than 9 months).

Dynamic world: Water—Water is present in the image. Contains little-to-no sparse
vegetation, no rock outcrop and no built-up features such as docks. Does not include land
that can or has previously been covered by water.

Global surface water dynamic: Permanent water—Mean water percent ≥ 90% and
inter-annual variability ≤ 33%. Stable seasonal—Intra-annual variability with inter-annual
variability < 50%.

Wetland class definitions:
LCMAP: Wetland—Lands where water saturation is the determining factor in soil

characteristics, vegetation types and animal communities. Wetlands are comprised of
mosaics of water, bare soil and herbaceous or wooded vegetated cover.

NLCD: Wetlands—Woody Wetlands: areas where forest or shrubland vegetation
accounts for greater than 20% of vegetative cover and the soil or substrate is periodically
saturated with or covered with water. Emergent Herbaceous Wetlands: Areas where
perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the
soil or substrate is periodically saturated with or covered with water.

GlobeLand30: Wetland—Land covered by wetland plants and water bodies, including
inland marsh, lake marsh, river floodplain wetland, forest/shrub wetland, peat bogs,
mangrove and salt marsh, etc.

ˆFROMGLC: Wetlands—Although wetland is defined in the RAMSAR convention
to maximize wetland areas, we intend to include only marshland with distinctively high
reflectivity in the NIR band. Low relief areas with perched bogs, playas and potholes
may also be included depending on the season of image acquisition time. Forested wet-
land is not included here as it cannot be well identified from TM images. Marshland—
Aquatic and hydrophytic herbaceous plants observable from the image as non-water cover.
Mudflats—Generally unvegetated expanses of mud, sand or rock lying between high and
low water lines.
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ˆEsri: Flooded vegetation—Areas of any type of vegetation with obvious intermix-
ing of water throughout a majority of the year. Seasonally flooded area that is a mix
of grass/shrub/trees/bare ground (e.g., flooded mangroves, emergent vegetation, rice
paddies and other heavily irrigated and inundated agriculture).

ˆWorld Cover: Herbaceous wetland—Land dominated by natural herbaceous vegeta-
tion (cover of 10% or more) that is permanently or regularly flooded by fresh, brackish or
salt water. It excludes unvegetated sediment and swamp forests (classified as tree cover)
and mangroves). Mangroves—Taxonomically diverse, salt-tolerant tree and other plant
species which thrive in intertidal zones of sheltered tropical shores, ‘overwash’ islands
and estuaries.

ˆDynamic world: Flooded vegetation—Areas of any type of vegetation with obvious
intermixing of water. Do not assume an area is flooded if flooding is observed in another
image. Seasonally flooded areas that are a mix of grass/shrub/trees/bare ground.

Barren class definitions:
LCMAP: Barren—Land comprised of natural occurrences of soils, sand or rocks where

less than 10% of the area is vegetated
NLCD: Barren—Barren Land (Rock/Sand/Clay)—areas of bedrock, desert pavement,

scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits
and other accumulations of earthen material. Generally, vegetation accounts for less than
15% of total cover.

GlobeLand30: Bare land—Land with vegetation cover lower than 10%, including
desert, sandy fields, Gobi, bare rocks, saline and alkaline land, etc.

ˆFROMGLC: Barren Land—Vegetation is hardly observable but dominated by exposed
soil, sand, gravel and rock backgrounds. Dry salt flats—Dry salt flats occurring on the
flat floored bottoms of interior desert basins. Sandy areas—Sandy areas are composed
primarily of dunes accumulations of sand transported by wind. Bare exposed rock—Gravel
land and bare rocks. Bare herbaceous croplands—Just harvested, fallow land and all other
types of land not covered by vegetation such as lake bottoms in dry season. Dry lake/river
bottoms—Other types of land not covered by vegetation such as lake/river bottoms in dry
season. Other barren lands—All other types of land not covered by vegetation.

ˆEsri: Bare ground—Areas of rock or soil with very sparse-to-no vegetation for the
entire year. Large areas of sand and deserts with no to little vegetation (e.g., exposed rock
or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines).

World Cover: Bare/sparse vegetation—Lands with exposed soil, sand or rocks, and
never has more than 10 % vegetated cover during any time of the year.

ˆDynamic world: Bare ground—Areas of rock or soil containing very sparse-to-no
vegetation. Large areas of sand and deserts with no-to-little vegetation. Large individual
or dense networks of dirt roads.

Appendix B F1 Scores for Thematic LCLU Products over Climatic Zones

Table A1. F1 scores for thematic LCLU products over climatic zones.

Product Zone Developed Cropland Grass/Shrub Tree Cover Water

DW Temperate, no dry season 65.6% 75.3% 71.6% 89.4% 87.8%
Arid 70.1% 58.1% 56.3% 41.6% 91.8%

Temperate, dry summer 76.3% 61.7% 62.2% 88.9% 84.2%
Cold, dry/hot summer 70.1% 89.6% 74.1% 85.4% 94.4%

Cold, warm/cold summer 56.6% 82.8% 64.1% 90.0% 97.7%
Esri Temperate, no dry season 71.3% 74.9% 67.1% 87.5% 87.0%

Arid 69.9% 76.7% 90.0% 32.0% 88.1%
Temperate, dry summer 79.7% 72.5% 69.2% 83.0% 81.1%
Cold, dry/hot summer 74.1% 86.3% 67.5% 85.8% 93.0%

Cold, warm/cold summer 52.0% 81.2% 65.9% 88.9% 98.1%
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Table A1. Cont.

Product Zone Developed Cropland Grass/Shrub Tree Cover Water

WC Temperate, no dry season 30.3% 77.6% 67.2% 86.5% 84.5%
Arid 56.0% 82.0% 85.8% 71.5% 88.3%

Temperate, dry summer 56.6% 62.7% 67.9% 85.3% 84.8%
Cold, dry/hot summer 27.7% 88.2% 72.7% 81.8% 89.9%

Cold, warm/cold summer 16.7% 84.3% 69.8% 91.3% 98.0%
LCMAP Temperate, no dry season 68.2% 66.1% 52.3% 86.4% 85.5%

Arid 72.1% 85.6% 94.2% 76.7% 89.3%
Temperate, dry summer 82.1% 79.5% 72.1% 84.8% 87.5%
Cold, dry/hot summer 72.1% 85.0% 68.3% 87.7% 93.2%

Cold, warm/cold summer 50.0% 78.1% 64.6% 90.8% 97.7%
NLCD Temperate, no dry season 73.1% 67.8% 53.3% 84.6% 89.2%

Arid 67.2% 88.0% 94.5% 74.2% 89.9%
Temperate, dry summer 79.0% 77.7% 69.0% 82.9% 87.5%
Cold, dry/hot summer 75.2% 86.0% 66.8% 86.7% 92.0%

Cold, warm/cold summer 61.5% 81.6% 65.3% 89.5% 98.6%
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