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Abstract

This paper presents a hierarchical, multi-stage adaptive
strategy for image classification. We iteratively apply
various classification methods (e.g., decision trees, neural
networks), identify regions of parametric and geographic
space where accuracy is low, and in these regions, test

and apply alternate methods repeating the process until

the entire image is classified. Currently, classifiers are
evaluated through human input using an expert-based
system; therefore, this paper acts as the proof of concept
for collaborative classifiers. Because we decompose the
problem into smaller, more manageable sub-tasks, our
classification exhibits increased flexibility compared to
existing methods since classification methods are tailored to
the idiosyncrasies of specific regions. A major benefit of our
approach is its scalability and collaborative support since
selected low-accuracy classifiers can be easily replaced with
others without affecting classification accuracy in high
accuracy areas. At each stage, we develop spatially explicit
accuracy metrics that provide straightforward assessment
of results by non-experts and point to areas that need
algorithmic improvement or ancillary data. Our approach

is demonstrated in the task of detecting impervious surface
areas, an important indicator for human-induced alter-
ations to the environment, using a 2001 Landsat scene from
Las Vegas, Nevada.

Introduction

Current image classification methods provide choices among
many complex algorithms. At one extreme, algorithms
provide great internal sophistication and little opportunity
for human involvement in classification logic; at the other
extreme, humans can examine and interpret each classifica-
tion step. Neural networks are an example of the former type
and decision trees an example of the latter. Algorithms that
offer little opportunity for human involvement have been
observed to classify accurately and efficiently in selected
areas, but are not currently selected for large-scale implemen-
tations; for example, the National Land Cover Dataset (NLCD)
is based on an inductive machine learning decision tree
approach. We conclude that there is a poorly understood
interplay between image complexity, algorithmic complexity,
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and classification error that offers opportunities for synthesis
of improved performance through application of different
algorithms to different regions of geographic and parameter
space. We introduce a strategy for applying such a hybrid
process.

The central premises of this paper are: (a) that complex-
ity is not high in all parts of the input space, (b) that different
algorithms can be applied in different parts, thereby adap-
tively matching algorithmic complexity to image complexity,
and (c) that classification accuracy improvements can be
achieved with this approach by establishing a framework for
progressive accuracy increase using hybrid classifiers. These
premises translate to three simple operating principles that
are admittedly cumbersome in application at this early stage
of evolution:

1. Perform diagnostics that identify optimum methods to use
from the constantly evolving suite of “standard” methods.

2. As part of these diagnostics, consider alternative inputs.

3. Apply the diagnostics iteratively to parts of the input space
where earlier processing stages did not work well.

Upon automation, the potential for improved perform-
ance is great. The worst performance from the hybrid method
is the best performance from the single standard methods;
this is a strong starting point.

This paper acts as the proof-of-concept for a collabora-
tive framework for integration of multiple classifiers.

A collaborative framework divides the problem into multi-
ple sub-problems and addresses the classification in each
of the different parts of the input space through evaluation
of multiple competing algorithms. We think the concept
of a collaborative framework is a novel contribution in

the remote sensing field even at this early stage. In this
preliminary phase, our approach is implemented in an
expert-system environment requiring human involvement.
Expert-based systems have already been implemented
successfully in remote sensing applications; for an early
review in image processing applications, see Matsuyama
(1989), and for a good explanation from the remote sensing
perspective, see Tso and Mather, (2001) and Jensen (2005).
Because our hybrid algorithms use machine-aided human
judgment to select classifiers and their inputs, there is
considerable opportunity for human involvement and
application of specialized knowledge in these selections,
therefore adding strength to the evaluation of potential
classifiers and inputs.
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One of the premises of a collaborative framework is the
variability of classification complexity (Mountrakis, 2008).
This is illustrated by the relative ease of identifying water
and some types of vegetation and the relative difficulty
of separating other land types (e.g., soil from constructed
areas). In this paper, we will demonstrate our collaborative
classification approach on the task of constructed impervi-
ous surface identification. Our methodology can easily be
generalized to classify other remotely-sensed datasets and
has the potential to find fruitful ground in non-imagery
classification problems. We should note that significant
improvements in classification accuracy are not the major
target of this work, rather we focus on introducing a
general framework with at least as accurate results: a
standard that is practically guaranteed, as noted above,
because the worst performance of hybrid methods should
be as good as the best performance of single standard
methods.

We focus on producing binary maps of manmade
impervious surface areas (1SAs): roads, sidewalks, parking
lots, driveways, and rooftops. 1SAs introduce substantial
functional changes in natural environments and ecosystems;
they reduce or eliminate the capacity of underlying soil to
absorb water, increase peak discharges associated with storm
and snowmelt events, increase likelihood of downstream
flooding (Berry and Horton, 1974), and transport pollutants
that degrade biological, chemical, and physical characteris-
tics of lakes, streams, and estuaries, particularly downstream
from urban areas. Biological integrity of streams and riparian
habitats diminishes as the fractional 1SA surrounding them
increases (Kennen, 1999). Roads, whose surfaces are an
important 1SA, provide the skeleton for construction of
other types of 1SAs. Roads themselves have been shown to
produce dozens of adverse ecological changes (Forman,
2003; Trombulak and Frissell, 2000; Forman and Deblinger,
2000; Forman and Alexander, 1998; Spellerberg, 2002).
Thus, our investigations have significant potential value in
the evaluation of human alteration of natural environments.

The balance of this paper presents current remote sensing
classification methods (in the next Section), followed by a
description of the study area and preliminary data processing.
Next, we describe the details of our collaborative classifica-
tion, and present our results, followed by a discussion of
benefits and limitations of our methods.

Existing Appr oaches
This paper discusses an alternative approach for remote
sensing classification and is demonstrated on impervious
surface area (ISA) detection. Our literature review includes
existing methods for imperviousness detection, works on
uncertainty incorporation in classification results, and
hybrid models where multiple algorithms are employed.
Forster (1980) was one of the first to examine the relation-
ship between Landsat data and percentages of land-cover
types. The analysis was performed in the Sydney metropolitan
area using multiple regression techniques. Much later, Ridd
(1995) evaluated the accuracy of mapping the percentage of
ISA using 30 m resolution Thematic Mapper multispectral
imagery. With this approach, detailed land-cover, land-use,
and biophysical parameters were obtained for urban ecosys-
tems. In the recent years, a plethora of algorithms have sur-
faced on 1SA detection (Ji and Jensen, 1999; Ward et al., 2000;
Wang et al., 2000; Flanagan and Civco, 2001; Smith and
Goetz, 2001; Small, 2002; Wu and Murray, 2003; Hodgson
et al., 2003; Bauer et al., 2005; Yang, 2006; Powell et al.,
2007; Aitkenhead and Dyer, 2007). The latest addition is
a book devoted exclusively to remote sensing application
towards impervious surface identification (Weng, 2007).
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The aforementioned works have a variable accuracy ranging
from 75 percent to 94 percent. Our approach complements
these works by adding a spatially-explicit accuracy layer to
the obtained results while concurrently exhibiting comparable
accuracy.

The only existing methodology in the literature applied
at a nationwide scale is the approach currently used to
classify the imperviousness in the NLCD dataset (Yang et al.,
2003; Homer et al., 2004). The authors who described NLCD
processing recognized that their decision-tree approach
overestimated ISA in rural areas, and as a result, the NLCD
program employs manual editing to eliminate 1SA outside of
urban areas. There is, of course, ISA in rural areas, and the
zero expression of rural 1SA in NLCD suggests a need for
algorithmic improvement. Other approaches have been
implemented to incorporate texture/size/shape analysis,
mostly using e-Cognition® software. A comparison of object-
based and per-pixel classifiers for ISA detection is available
in Yuan and Bauer (2006). Our method does not compete
directly with object-based analysis, but actually establishes a
framework where these computationally-expensive metrics
are implemented only in complex situations.

Recent work has focused on deriving the uncertainty
map of the land-cover prediction. These works present
uncertainty of land-cover classification for each pixel. Foody
et al. (1992) and Canters (1997) applied class membership
values in the maximum-likelihood classifier to model the
classification uncertainty. Steele et al. (1998) developed an
approach to constructing uncertainty maps based on mis-
classification probabilities. Carpenter et al. (1999) used a
voting ARTMAP system to produce uncertainty map for
each pixel. Pontius (2000) presented a method to separate
overall classification error into quantification error and
location error. Alimohammadi et al. (2004) used maximum
likelihood classification algorithm to perform the classifica-
tion and generated uncertainty estimation. Liu et al. (2004)
provided a method on uncertainty of large-scale mapping
based on disagreement between different methods. Aires
et al. (2004) developed a neural network approach for
remote sensing classification that incorporates network
uncertainty.

Hybrid models which merge multiple classifiers together
are adopted to increase classification accuracy. Several
works in machine learning have showed the potential of
a hybrid approach (Hansen and Salamon, 1990; Perrone,
1992; Wolpert, 1992). A simple implementation of the hybrid
concept is to average predictions of different classifiers
(Krogh and Vedelsby, 1995; Breiman, 1996). More advanced
methods (Steele, 2000) used a product rule, sum rule, and
stacked regression methods to optimally merge multiple
methods; this hybrid approach delivered higher accuracies
(ranging from 66 percent to 71 percent) than individual
classifiers (ranging from 46 percent to 60 percent). More
recently, Coe et al. (2005) developed a hybrid model combin-
ing an object-oriented and a pixel-based approach. They
fused Landsat, Ikonos, and lidar data and parcel data
together to establish a spatial urban object database at multi-
ple spatial scales and class resolutions. Further evaluation
of the hybrid methods shows that multiple classifiers may
not only behave differently globally, but may also have
distinct local behavior (Jain et al., 2000). Motivated by this
work, Liu et al. (2004) presented a hybrid classification
approach using decision tree and ARTMAP neural network,
and applied them on North America using AVHRR data.
Their work moves beyond the winner-takes-all methodology
and into a fuzzy merging of multiple classifier outputs by
using three levels of agreement and disagreement. From
commercial software, Definiens’ Enterprise Image Intelligence
Suite supports hierarchical rules and allows application of
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different algorithms at different parts of the input space. It
has limited modeling capabilities, as only simple nearest
neighbor classifiers are included in the software.

There is one downfall of current hybrid models and
recent classifiers associated with uncertainty metrics;
namely, they both increase significantly the internal algo-
rithmic complexity. Furthermore, these works recognize
that for a hybrid method to work, classifiers need to make
their errors in different parts of the input space (Krogh and
Vedelsby, 1995). However, from the algorithmic design
perspective, there are no adjustments to force algorithms to
focus on different parts of the problem; instead researchers
have employed a post-process analysis to identify where
each classifier may outperform another. By doing so, poten-
tial benefits are a random result of each classifiers behavior
instead of a calculated design. Our goal is to create a clas-
sification framework for collaborative contributions of
multiple algorithms. What separates our work from others
is (a) our ability to incorporate context behind the purpose
of each classifier in a hybrid approach (in our application,
for example, to separate dark 1SA from dark soil), and
(b) the progressive adjustment of complexity based on
the underlying problem characteristics leading to applica-
tion of complex algorithms in selected parts of the para-
metric and geographical space. The major benefit of our
method is that algorithms can be seen as plug-ins and be
replaced/improved depending on problem requirements; for
further discussion see Mountrakis (2008).

Targeted Outcome, Study Ar ea, and Classification Inputs

From the implementation perspective, our goal is to inter-
pret the presence or absence of impervious surface areas
(1sA) within 30 m Landsat cells. We selected coarser Landsat
imagery as opposed to high-resolution imagery because our
method is designed for large-scale applications. Our binary
product goal contrasts with other 1SA interpretation efforts,
including the sub-pixel fractional ISA interpretation pro-
duced by NLCD. The rationale for our choice is that the
typical 15 percent error rate of sub-pixel 1SA determinations
concentrates primarily in the lower ISA percentages, i.e.,

primarily in rural areas. The overestimation of rural 1SA was
recognized by Yang et al., (2003), who applied ancillary data
such as population density and buffered roads, NLCD 1992,
and NOAA City Lights to build an urban mask that was used
to zero all rural 1SA estimates. Considering potential uses of
ISA maps and the fact that rural areas cover 90 to 95 percent
of the U.S. landscape, we believe that a large-scale binary
product potentially offers a more balanced outcome (rural
and urban areas) that retains most of the essential spatial
pattern information contained in fractional 1SA products. For
applications interested in a fractional product, our binary
product can act as an image-based mask for selected applica-
tion of subpixel algorithms.

Our study area is approximately a 49 km X 57 km
rectangle containing Las Vegas, Nevada and its immediate
suburbs (Figure 1). More specifically, we used a subset of an
April 2001 Landsat scene (1,905 X 1,644 pixels), and the six
bands with approximately 30 m ground pixel resolution.

In addition to the established Tasseled Cap transforma-
tions (Brightness, Greenness, and Wetness), and the Normal-
ized Difference Vegetation Index (NDVI), we included the
following classification inputs in order to discriminate ISA
presence:

1. Normalized differences between other bands (e.g., normalized
difference between bands 5 and 1).

2. Multiple band-to-band advanced correlations (e.g., difference
between band 1 and absolute Greenness normalized by the
summation of bands 1 and 5).

3. Neighborhood metrics using a standard deviation mask
(e.g., 5 X 5,7 X 7) to distinguish ISA from other features
with similar spectral response but distinct neighboring
characteristics.

We tested 277 different inputs expressing numerous of the
aforementioned combinations, and we finally selected 23 for
our approach. Table 1 displays the 23 inputs and their
calculation method.

An Expert-hased Method for Collaborative Algorithms

The major motivation of our work is to establish a frame-
work where multiple algorithms can work collaboratively
and replacement of one algorithm does not affect the

website: www.asprs.org .

Figure 1. Study area and Landsat Image. A color version of this figure is available at the

ASPRS
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TABLE 1. CLASSIFICATION

INPUT TABLE

Abbreviation Calculation Method (P1 to P6 are the six Landsat bands)
B Brightness = (0.3561 *P1) + (0.3972 *P2) + (0.3904 *P3) + (0.6966 *P4)
+ (0.2286 *P5) + (0.1596 *P6)
G Greenness = (—0.3344 *P1) + (—0.3544 *P2) + (—0.4556 *P3) + (0.6966 *P4)
+ (—0.0242 *P5) + (—0.2630 *P6)
ND41 ND41 = (P4 — P1) / (P4 + P1)
ND51 ND51 = (P5 — P1) / (P5 + P1)
ND54 ND54 = (P5 — P4) / (P5 + P4)
ND42 ND42 = (P4 — P2) / (P4 + P2)
NDB5 NDB5 = (Brightness — P5) / (Brightness + P5)
NDaG1 NDaG1 = (abs(Greenness) — P1) / (abs(Greenness) + P1)
NDaG5 NDaG5 = (abs(Greenness) — P5) / (abs(Greenness) + P5)
D51sd5 Local standard deviation on a 5 X 5 moving window as applied on P5 — P1
ND45sd3 Local standard deviation on a 3 X 3 moving window as applied on ND45
ND43sd5 Local standard deviation on a 5 X 5 moving window as applied on ND43
ND43sd7 Local standard deviation on a 7 X 7 moving window as applied on ND43
ND43sd9 Local standard deviation on a 9 X 9 moving window as applied on ND43
ND52sd3 Local standard deviation on a 3 X 3 moving window as applied on ND52
NDB1sd5 Local standard deviation on a 5 X 5 moving window as applied on NDB1
Bsd3 Local standard deviation on a 3 X 3 moving window as applied on Brightness
UBaG5 UBaG5 = (Brightness — abs(Greenness)) / (P5)
UBaG1 UBaG1 = (Brightness — abs(Greenness)) / (P1)
UND1aG15 UND1aG15 = (P1 — abs(Greenness)) / (P1 + P5)
UNtanB4 UNtanB4 = tan(Brightness — P4)
UNtanBWW3 UNtanBWW3 = tan(Brightness — Wetness) — tan(Wetness — P3)
where Wetness = (0.2626 *P1) + (0.2141 *P2) + (0.0926 *P3) + (0.0656 *P4)
+ (—0.7629 *P5) + (—0.5388 *P6)
UNtanBGWB UNtanBGWB = tan(Brightness — Greenness) — tan(Wetness — Brightness)

Note: Moving window algorithms used symmetrical buffers along image edges to compensate for lack of
pixels underneath each window at image borders. The abbreviations of the last four dimensions start with
“U” to denote uncommon dimension. Also, “ND” stands for Normalized difference, and “sd” relates to a
standard deviation mask. Finally in our calculations “abs” stands for absolute value, and “tan” relates to

tangential value.

operation of others. By doing so, limitations of one approach
can be easily identified, and incremental improvements can
be achieved as classifiers improve. Our method targets large-
scale complex classifications, such as the NLCD where
diverse landscape characteristics mandate flexible, easily
updated, yet accurate methods. Furthermore, an inherent
outcome of the application of multiple algorithms is the
accuracy variability in the classified product. Spatial error
estimation is a highly desired characteristic, because large-
scale maps are expected to act as inputs for further analysis
by scientists; e.g., urban modelers, biologists, and hydrolo-
gists, who are not familiar with image classification methods
and their limitations.

In this paper, we demonstrate the collaborative frame-
work concept through the application of impervious surface
detection. Our task is to create a binary product expressing
impervious surface presence or absence. Considering that
our algorithm may act as a filtering process for subsequent
subpixel classifiers, we assign in the impervious class pixels
with any portion of imperviousness. At the heart of our
approach is an expert-based system (EBS) that partitions
the classification problem, thus isolating various parts of
the input space for application of tailored classification
methods. Currently, the partitioning of the problem in
several sub-problems is assigned through human interaction,
but we envision in the near future an automated process.
The EBS starts with simple algorithms (e.g., two-dimensional
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classifiers) and tests numerous combinations of inputs at
low dimensional space. EBS prioritizes these numerous
combinations based on classification accuracy and portion of
the scene classified. Up to this point, the process is auto-
mated. At the next step the results are presented to an
expert, who using visualization tools, attempts to assign
context behind the absorbed pixels (e.g., water). This is an
iterative process where the expert gradually assigns context
to classified pixels until the whole scene is classified. As
classification complexity increased, we raise the inputs and
algorithmic complexity as well. There is a stage in that
iterative process that two-dimensional classifiers will not
have enough discriminatory power to classify remaining
pixels. If that happens, we resort to higher dimensions and
more powerful algorithms (e.g., neural networks, decision
trees) to help with the classification process. Because of the
dimensionality increase, it is difficult for an expert to assign
context at the input space. In that case, we assign context
based on output performance of the algorithm, for example,
how many pixels were classified correctly in low, medium
and high brightness.

The expert system segments the input space into regions
where different processes will be applied (spectral cluster-
ing). The key to the sub-problem identification is to perform
it in a context-specific manner. Our definition of context-
specific classification relates to algorithms targeting specific
tasks; it does not relate to geographical context (e.g., spatial
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relationships among features). In our case, we select to
gradually distinguish impervious surface areas (1SAs) from
vegetation, water, and soil. We have also selected to further
distinguish 1SAs into low, medium, and high brightness.

The hierarchical structure of the expert system is
presented in Figure 2. All pixels are originally inserted into
the algorithm, and as they propagate through the hierarchi-
cal structure, they get classified. The major differences
between our expert-based hierarchical approach and auto-
mated inductive machine learning decision trees are:

1. Specific context is assigned to each node. Nodes are
designed to perform specific tasks (e.g., separate 1sA from
vegetation) instead of being identified through a mathemati-
cal process that has no such context motivation.

2. Partitioning at each node is not restricted to one-dimensional
linear decision (e.g., NDvVI >0.1). Multiple dimensions can be
used concurrently. These dimensions can represent specific
spectral bands, or calculated spectral transformations (e.g.,
principle components) along with texture information (e.g., a
standard deviation mask). In addition, non-linear partition-
ing algorithms can be implemented within each node.

3. A node on our hierarchical structure does not necessarily
assign an output class; it may provide an output (a leaf) for
down-tree use by other classifiers (e.g., a neural network
may process input pixels from a higher node).

4. A node does not only support dichotomy, instead more than
two partitions can be identified from a single node.

5. A classifier at any node level may be any type of algorithm,
ranging from simple linear regression to complex neural
networks. Automated designs for decision trees only support
linear regression at the leaf level.

6. Our hierarchical structure is a semi-automated procedure
that utilizes user-provided input to assign pixels, based on
all available data at that level of the tree, to processing
nodes. Inductive machine learning trees fully automate the
training process and incorporate little or no user input.

The variables shown in Table 1 were selected from
a much larger array of variables derived from the six input
T™ bands (mathematically these are not independent vari-
ables, but they are treated as independent in our supervised
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Figure 2. Hierarchical context-specific Classification.

iterative process). There are an infinite number of linear band
combinations, band ratios, ratios of linear combinations,
neighborhood statistics and their ratios, and so on. We evalu-
ated 277 derived variables by examining them in pairs. The
human supervisor thus dealt with individual two-dimensional
(2D) representations out of 277 preselected inputs. For each
pair of variables we generated 50 rows X 50 columns 2D
histograms of the 1SA and non-1SA pixel populations, and then
further simplified the 2D picture by displaying the ratio of
ISA to non-ISA pixel counts in each histogram cell. Many
parameter pairs exhibited poor separation of high- and low-
ISA regions; our objective was to find the few 2D parameter
pairs that showed clear clustering, and then to express the
dividing line(s) between the clusters mathematically. Figure 3
shows a parameter pair that exhibits good clustering and the
mathematical functions that separated the zones of clustering.
Many parameter pairs displayed such poor clustering that the
pair was simply rejected. For promising pairs, the mathemati-
cal separation rules were applied to individual pixels, the
accuracy of the separation calculated, and this accuracy was
used as a figure of merit for the parameter pair. We were able
to reject parameter pairs that were less than 90 percent
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Figure 3. Context-specific partitioning of targeted input
space (Node N , of Figure 2): (a) Complete input space,
and (b) Magnified part of the input space.
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input space, and (b) Magnified part of the input space.

Figure 4. Context-specific partitioning of targeted input space (Node N

» of Figure 2): (a) Complete

accurate in classifying 1SA and non-ISA pixels, and then select
the most accurate classification from the remaining pairs. We
should also mention that not all possible 2D pairs were tested;
instead, a subset was evaluated based on human input and
computer-generated statistics (e.g., percent of overall 1SA
pixels that would fall within the 90 percent ratio cells in the
50 X 50 grid). At the end of the process, the only variables
that had been used in 2D separations are those shown in
Table 1 plus the additional (and effectively undecipherable)
parameters that were generated by processing Table 1 vari-
ables in different subsequent algorithms.

Let us examine now the specifics of the identified
expert system of Figure 2. Initially, we identify the majority
of vegetation and separate that from 1SA (Node N;). Within
this task-specific context we visualize our training set using
the normalized difference of bands 4 and 1, and the Green-
ness value from the Tasseled cap transformation (Figure 3).
We separate the input space into three sections using a line
and a polynomial function. Section A contains vegetation
directly extracted without further processing. Section B
contains a mixture of ISA and vegetation that we need to
examine further. This can be done by any appropriate
algorithm (e.g., decision trees, neural networks, Bayesian
estimation) using any available inputs that fit the specific
context of the task. Section B is classified using a support
vector machine algorithm with four inputs and a mediocre
accuracy of 75 percent. If necessary, section B could be
further divided using a different input space to constrain the
domains of the algorithms (e.g., grass versus deciduous
trees) and potentially increase the classification accuracy. In
the Las Vegas sparsely vegetated area and with our 1SA
identification objectives, such refinements were not deemed
applicable.

In addition to sections A and B, we have samples in
section C. At this tree node, it is difficult to assign a specific
context behind section C (what it contains), so we carry
these samples to the next level of our analysis (they are the
input samples for node N,). At the next level (Figure 2,
node N,), we use different inputs but the same methodol-
ogy as presented above. The analyzed samples are the ones
belonging to section C of node N;. Our classification
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inputs this time are the normalized difference between
Brightness and band 5 for the X-axis, and normalized
difference between Greenness and band 1 for the Y-axis
(Figure 4). All the values for Greenness that are contained
at this node are negative numbers due to the selection of
section C in Figure 3. So, the normalized difference is
easily facilitated by using the absolute value of Greenness.
We separate this input space into three sections: C, contains
the context-unidentifiable portion, C, contains water sam-
ples, and C; has 1sA samples.

Proceeding to analyze section C,, we realized that further
classification would need more than two inputs due to
increased complexity; i.e., our search for parameter pairs with
good separation of this population was futile. Visualization
and human supervision are substantially more difficult in
spaces of more than two dimensions. We dealt with this
difficulty by applying an unsupervised algorithm, and then
evaluating the results from this algorithm in a low-dimensional
space. We used a neural network with six inputs, and pro-
jected the accuracy of the network along the brightness input
(Figure 5). The algorithm generated accurate results for
medium brightness and degraded results under low- or high-
brightness conditions. The brightness input space was thus
naturally divided into three sections, namely C,,, Cy},, and
C,.. For C;;, we used the tested neural network as the
classifier. For the other two sections, we proceeded with
further testing.

At this stage, we can assign specific context as to what
we are looking for in each of these sections. Researchers in
the past were able to identify three types of ISA depending
on their brightness (light, medium, dark) but failed to express
that explicitly in their classification method (e.g., Hung,
2002). Furthermore, non-1SA features in low-brightness areas
are mostly shadow and water, some vegetation, and rare
cases of soil. As brightness increases the vegetation presence
decreases and soil presence is more evident. The reader
should also keep in mind that the majority of vegetation is
already absorbed in node N;.

For section C,, (dark samples), we use a decision tree to
separate dark 1SA from dark non-iSA. It is a simple classifier
with two inputs. This supports our hypothesis that some
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Figure 5. Context-specific partitioning of targeted input
space (Node N 3 of Figure 2).

samples are easier to classify than others if a successful
hierarchical approach is established. The identified decision
tree has adjusted to the lack of complexity of this sub-
problem (dark 1sA identification).

Figure 5 supports the well-documented spectral resem-
blance of 1SA and specific types of soil represented within
the [200, 250] brightness range of section C,.. Since the
algorithmic method and inputs used for this section could be
completely different than other sections, we can increase the
expressiveness of our model by adding complex inputs (e.g.,
texture statistics and other unusual multi-band inputs). Note
that these are computationally expensive inputs that we use
only if necessary and for selected parts of the input space.

Samples in section C,, are forwarded to node N, (see
Figure 2). A simple partitioning takes place at that node
using a one-dimensional input, the Normalized Difference
between bands 5 and 1 (ND51). Samples with ND51 >0.365
(section Cigpign) are directly identified as non-ISA pixels.

The vast majority of these samples are bright soil. Samples
with ND51 <0.365 are assigned to section C,,, and require
further processing. This is probably the most challenging
classification due to the spectral resemblance of bright 1SA
and soil. We implemented a decision tree to identify 1SA
within that range. We used six inputs, four of which were
based on neighborhood statistics. We stopped the hierarchi-
cal analysis at this level since we have reached a predeter-
mined target for accuracy (~90 percent in the whole

study area).

Below, we offer two tables to help readers follow this
rather complicated but rewarding classification approach.
Table 2 summarizes each node, their respective inputs, and
the context behind their partitioning. Table 3 identifies key
properties for each of the four leaf classifiers.

Results

Statistical Evaluation

We evaluated our method using a dataset created from
high-resolution aerial photography. The digitization process
assigned a pixel as 1A if any portion of the 30 m cell
covered ISA on the high-resolution aerial imagery. The
complete evaluation dataset contained 242,469 cells of

30 m resolution; 20,000 pixels were used for training,

and the remaining 222,469 pixels were never seen by any
algorithms in their training phases and were used for
validation. In our tests, we first assessed the incorporation
of additional statistics in the classification process and
then evaluated our collaborative expert system.

Incorporation of Additional Statistics in the Classification
Process
We initially evaluated the expressiveness of the raw Landsat
information as opposed to calculated statistics from these six
bands (Table 4). We have performed 5,000 simulations for
each input combination. Decision trees were trained using a
ten-fold cross-validation method and backpropagation neural
networks with variable hidden nodes were implemented,
both using MATLAB’s built-in functions.

For each input combination, we report the ones with
the best overall accuracy. Table 4 shows the different
input combinations; we started with the six Landsat bands

TABLE 2. NoDE CONTEXT TABLE
Input Dimensions Non Output
Node Input Pixels Part Context Used ISA ISA Propagation
1 All Pixels A Vegetation ND41, Greenness | END
1 All Pixels B Vegetation ISA ND41, Greenness Classifier B
1 All Pixels C None ND41, Greenness Feeds Node 2
2 C Pixels C, None NDB5, NDaG1 Feeds Node 3
2 C Pixels C, Water NDB5, NDaG1 | END
2 C Pixels Cy ISA NDB5, NDaG1 ] END
3 C, Pixels Cia Dark ISA Brightness Classifier C,,
Shadows, Dark
Soil/Vegetation
3 C, Pixels Cpp Medium ISA Brightness Classifier C,p
Soil, Vegetation
3 C, Pixels Cie Bright ISA Brightness Feeds Node 4
Bright Soil
4 C,. Pixels Cierow Bright ISA ND51 Classifier Cyq1 o
Bright Soil
4 C,. Pixels Cicttigh Bright Soil ND51 | END
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TABLE 3. LEAF CLASSIFIER TABLE

Input

Samples Dimensions Context Method

B UBaG1, UBaG5, ISA Support Vector
ND43sd5, ND52sd3 Vegetation =~ Machine

Cia UNtanB4, ND51 Dark ISA Decision Tree

NonISA

Cip ND54, ND42, Bsd3, Medium Backpropagation
UNtanBWW3, ISA Soil, Neural Network
UND1aG15, ND43sd7 Vegetation

Cic Low NDaG5, UNtanBGWB, Bright ISA Decision Tree

ND43sd9, ND45sd3,
NDB1sd5, D51sd5

Bright Soil

and then added the three Tasseled cap transformation
statistics (Brightness, Greenness, Wetness) and the Normal-
ized Difference Vegetation Index (NDvI). We followed with
the principal components of these two input combinations.
At the next step, we randomly selected variables from our
277 input collection (as described in a previous section).
We gradually increased the dimensionality from 10 to 15
and then to 20 inputs, and we also assessed the incorpora-
tion of neighborhood statistics. Here are our conclusions:

e The incorporation of Tasseled cap transformation statistics
and NDvVI made no significant difference for either the
decision trees or the neural networks.

e The transformation to the principal component (pc) space
did not provide any benefits. This is to be expected as pcC
analysis is not a parameterized approach, i.e., does not
consider class outputs in the transformation process.

e The inclusion of additional single pixel statistics had a
significant impact on the decision trees as it increased
overall accuracy by 1.5 percent to 2 percent. No change was
observed for the neural networks.

e The support of neighborhood statistics increased the overall
accuracy by 1.6 percent for the decision trees and 0.6 percent
to 1 percent for the neural networks. Considering the already
achieved accuracy (>90 percent), these increases are substan-
tial and show the value of spatial masks even at moderate
resolutions (30 m).

From the above, we can conclude that neural networks
clearly outperform decision tress in our application. Further-
more, neural networks’ increased mathematical flexibility
allows accurate classification without any post-processing of
the raw bands, while decision trees clearly benefit from
post-processing. Independently of the classification method,
neighborhood statistics provided substantial boost.

Comparison of the Collaborative Expert System

We used the same training and validation dataset, and we
compared our methodology to decision trees and neural
networks (Table 5). We performed two different evaluations:
first, we used the exact same inputs identified by our expert
system, and then, we selected random combinations of the
same number of inputs (23) from the pool of 277 candidates
(see fixed and random in Table 5). Each decision tree and

TABLE 4. STATISTICAL COMPARISON FOR INPUT VARIABILITY ON DECISION TREES AND NEURAL NETWORKS

Decision Trees

Spatial Refo- Refo- Ref1- Ref1- User0  Userl Prodo Prod1  Overall
Dim Type Masks Alg0 Algl Algo Algl (%) (%) (%) (%) (%) Kappa
6 OB No 146776 10287 17409 47997 89.4 82.4 93.5 73.4 87.6 0.69
10 OB_3T_NDVI No 142673 14390 12364 53042 92.0 78.7 90.8 81.1 88.0 0.71
PCA(OB) No 145281 11782 16561 48845 89.8 80.6 92.5 74.7 87.3 0.69
PCA(OB_3T_NDVI) No 144825 12238 14953 50453 90.6 80.5 92.2 77.1 87.8 0.70
10 Random No 148788 8275 14751 50655 91.0 86.0 94.7 77.4 89.6 0.74
15 Random No 148128 8935 14202 51204 91.3 85.1 94.3 78.3 89.6 0.74
20 Random No 148471 8592 14444 50962 91.1 85.6 94.5 77.9 89.6 0.74
10 Random Yes 150879 6184 13330 52076 91.9 89.4 96.1 79.6 91.2 0.78
15 Random Yes 149225 7838 11751 53655 92.7 87.3 95.0 82.0 91.2 0.78
20 Random Yes 151335 5728 13829 51577 91.6 90.0 96.4 78.9 91.2 0.78
Neural Networks
Spatial Refo- Ref0- Ref1- Ref1- User0  Userl Prod0  Prod1 Overall
Dim Type Masks Alg0 Algl Alg0 Algl (%) (%) (%) (%) (%) Kappa
6 OB No 148953 8110 12263 53143 92.4 86.8 94.8 81.3 90.8 0.78
10 OB_3T_NDVI No 149262 7801 12547 52859 92.3 87.1 95.0 80.8 90.9 0.77
PCA(OB) No 148466 8597 11607 53799 92.8 86.2 94.5 82.3 90.9 0.78
PCA(OB_3T_NDVI) No 148988 8075 11871 53535 92.6 86.9 94.9 81.9 91.0 0.78
10 Random No 148518 8545 11248 54158 93.0 86.4 94.6 82.8 91.1 0.78
15 Random No 148841 8222 11760 53646 92.7 86.7 94.8 82.0 91.0 0.78
20 Random No 149355 7708 12631 52775 92.2 87.3 95.1 80.7 90.9 0.77
10 Random Yes 149046 8017 10522 54884 93.4 87.3 94.9 83.9 91.7 0.80
15 Random Yes 148891 8172 10537 54869 93.4 87.0 94.8 83.9 91.6 0.80
20 Random Yes 149127 7936 9963 55443 93.7 87.5 95.0 84.8 92.0 0.80

OB: Original six bands, OB_3T_NDVI: OB plus three Tasseled cap statistics and NDVI, Ref: Reference, Alg: Algorithm, 0: NonISA class,

1: ISA class, User: User’s accuracy, Prod: Producer’s accuracy.
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TABLE 5. StaTIsTICAL CoMPARISON OF OUR METHOD WITH DECISION TREES AND NEURAL NETWORKS

Ref0- Ref0- Ref1- Ref1- User0 Userl Prod0  Prod1 Overall
Dim Type Algorithm Algo Algl Algo Algl (%) (%) (%) (%) (%) Kappa
23 Fixed Decision Tree 148756 8307 14249 51157 91.26 86.03 94.71 78.21 89.86 0.75
23 Random Decision Tree 150710 6349 13134 52272 91.98 89.17 95.96 79.92 91.24 0.78
23 Fixed Neural Network 150097 6966 10324 55082 93.56 88.77 95.56 84.22 92.23 0.81
23 Random Neural Network 148429 8634 9457 55949 94.01 86.63 94.50 85.54 91.87 0.80
23 Fixed Collaborative 149138 7925 8899 56507 94.37 87.70 94.95 86.39 92.44 0.82

Expert System

neural network was selected as the provider of the best
overall accuracy from 20,000 simulations.

Our approach compared favorably to the established
methods. The range of overall accuracy increase was from
0.2 percent to 2.6 percent. This is an enhancement consider-
ing the limited room for improvement beyond 90 percent
accuracy due to other errors (image acquisition and process-
ing). We should emphasize though that the major goal of
this paper is to provide the proof-of-concept for collabora-
tive algorithms by showing their applicability with equal or
better results.

Internal Accuracy Distribution of the Collaborative
Expert System
When complex algorithms such as neural networks are
implemented for classification purposes, the accuracy
assessment can only be performed at the network output
nodes. Variable classification metrics can be provided based
on the strength of each output node; however, if a specific
output node is found to underperform, the internal network
architecture cannot be changed without affecting other
output nodes causing retraining for the whole network.
This is one of the reasons behind their so-called “black
box” behavior and their limited error correcting capabilities.
Our approach on the other hand is harvesting the
modeling power of complex mathematical models such
as neural networks in a controlled fashion that facilitates
advanced yet simple error correcting capabilities. This
proposed expert system is composed of eight different
classifiers with their corresponding accuracies found in
Table 6. We see an interesting imbalance between each
algorithm’s accuracy; some are higher than 95 percent, while
others are below 83 percent (Algorithms 2 and 7). This high

TABLE 6. ACCURACY

variability is desirable because it provides us with the
opportunity to further improve accuracy by targeting our
efforts in one or two of these underperforming algorithms.
Each algorithm’s training is independent of the other, so we
will not affect high accuracy achieved by the other algo-
rithms, and we do not have to retrain our whole system.

Study Area Generalization

In our hierarchical approach, each of the classifiers is associ-
ated with specific accuracy metrics. These metrics are calcu-
lated in the calibration process and were provided in Table 6.
Upon simulation to the whole study area (partial Landsat
scene), our methodology exhibits two advantages resulting
from the identification of pixels classified by each of the eight
algorithms:

1. We propagate accuracy to specific scene portions, therefore
informing non-experts of algorithmic limitations.

2. We relate calibration and simulation datasets to identify
disproportional variations among them. This acts as a guide
if further evaluation pixels are acquired.

Table 7 shows the simulation of our approach to the Las
Vegas study scene. Clearly, segment A was overemphasized in
our calibration dataset (justifiably since we used a vegetation
dataset outside Las Vegas for training, but no vegetation exists
in Las Vegas), while segment C,,,, could use additional
training pixels to represent better the study area. In terms of
overall accuracy the 92.44 percent observed in calibration
would propagate into a 90.99 percent in the entire scene
simulation. Typical remote sensing classifiers do not distin-
guish between calibration and simulation accuracy.

The reader may notice the small scene contribution of
the first five classifiers. It is true that they do not con-
tribute considerably to the overall solution (~8 percent),

DISTRIBUTION WITHIN OUR COLLABORATIVE EXPERT SYSTEM

Ref0- Ref0-  Ref1- Ref1- User0 User1 Prodo Prod1 Overall
Algorithm  Segment Algo Algl Algo Alg1 (%) (%) (%) (%) (%) Kappa
1 A 9773 N/A 1 N/A 99.99 N/A N/A N/A 99.99 N/A
2 B 1788 592 663 1883 72.95 76.08 75.13 73.96 74.52 0.49
3 C, 3832 N/A 44 N/A 98.86 N/A N/A N/A 98.86 N/A
4 Cs N/A 182 N/A 10123 N/A 98.23 N/A N/A 98.23 N/A
5 Cia 1039 53 55 263 94.97 83.23 95.15 82.70 92.34 0.78
6 Cup 90382 3112 2752 31728 97.05 91.07 96.67 92.02 95.42 0.88
7 CicLow 28047 3986 4780 12510 85.44 75.84 87.56 72.35 82.23 0.61
8 Cictiigh 14277 N/A 604 N/A 95.94 N/A N/A N/A 95.94 N/A
Total All 149138 7925 8899 56507 94.37 87.70 94.95 86.39 92.44 0.82

N/A: Not applicable and it relates to the fact that those algorithms extracted directly a single class.
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TABLE 7.

PROJECTING AcCURACY DISTRIBUTION FROM CALIBRATION TO SIMULATION

Calibration Simulation
Algorithm Segment Segment Accuracy (%) Segment Portion (%) Scene Portion (%)
1 A 99.99 4.39 0.01
2 B 74.52 2.21 1.62
3 C, 98.86 1.74 1.13
4 Cs 98.23 4.63 3.47
5 Cua 92.34 0.63 0.51
6 Cip 95.42 57.52 49.46
7 Cretow 82.23 22.17 32.42
8 Cietiigh 95.94 6.69 11.39

since vegetation and water presence in our Las Vegas
study area is limited. However, the purpose of this paper
is to establish a unified framework for context-specific
multi-method classifiers. In other settings these classifiers
may process a higher percentage of pixels. For example,
we are currently implementing our approach in Syracuse,
New York where vegetation and water have a stronger
presence.

A representation of the impervious surface classification

results from our Las Vegas pilot study area follows (Figure 6).

In addition to the accurate classification, an accuracy layer

is produced (Figure 7). This accuracy layer is a major step
towards support of non-experts, algorithmic refinement
and targeted acquisition of external datasets. This layer was
produced by identifying which classifier (A, B, Cy,, Cyp,
CicLows Cicniigh» Gz, or C3) was used to categorize each pixel
in the hierarchical structure of Figure 2. Each classifier has
an associated accuracy metric (see Table 6) and that is the
accuracy we present to the user.

The accuracy for the whole study area is projected to be
90.99 percent. Depending on the application focus more
specific accuracy metrics can be produced. For example, if

Figure 6. 1sA Classification results.
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ASPRS website: www.asprs.org .

Figure 7. Classification accuracy of each algorithm. A color version of this figure is available at the

we split the area in four equal quarters the accuracy would
be 90.23 percent, 89.77 percent, 92.93 percent and 91.01
percent, respectively, moving clockwise from the northwest-
ern quarter.

Discussion and Conclusions

The methodology presented in this paper is a complex
expert-based system, and in its current form, it targets multi-
scene, large-scale applications rather than single scene
classification. Our goal is not to present yet another single-
thread classifier; instead, we strive to establish a framework
for collaborative algorithms. This in turn would allow
incremental algorithmic improvements instead of isolated
methods addressing problems already partially solved.

Our work is not the first to produce pixel-based accuracy
estimates of the classification (Carpenter et al., 1999, Pontius,
2000, Alimohammadi et al., 2004, Liu et al., 2004, Aires
et al., 2004). We build on these limited efforts by adding
an important component behind the concept of having multi-
ple classifiers merged in a unified solution, the concept of
targeted, context-specific classifiers. By decomposing the
assigned task (e.g., ISA versus non-ISA classification) into
smaller, more manageable sub-tasks (e.g., dark-ISA versus
dark-soil) several benefits of our hierarchical context-specific
approach can be identified. Starting with internal algorithmic
behavior we list the following.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Support for Targeted Classification Inputs

Combination of various inputs on-demand allows a more
expressive methodology than a typical single-method classifi-
cation using fixed inputs. Inputs are selected to distinguish
classes in limited parts of the input space, therefore facilitat-
ing increased discriminatory power. This by itself does not
guarantee higher accuracy, but it increases the potential

for higher accuracy, if the sub-problem identification is

done properly. We have also demonstrated how part of the
problem can be solved in a low dimensional input space
(one- or two-dimensional inputs) where visualizations are
easy and expressive in terms of assigning context.

Support for Different Algorithmic Methodologies

Another characteristic of our approach is that it is not
restricted to a single classification methodology (e.g., deci-
sion trees, neural networks). In this demonstration, we
have used polynomials, rectangles, and triangles in low

2D spaces combined with backpropagation neural networks,
decision trees, and support vector machines in spaces

of higher dimensionality. Arbitrary mixing of different
learning approaches is supported, if desired. Therefore,

the complexity of each process within our method adjusts
to the complexity of the underlying sub-task. As we demon-
strated in Figure 3, a simple polynomial can distinguish
some types of vegetation, while a neural network is neces-
sary to differentiate 1SA and some soil types. We should
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also note that different methods could work competitively
in addition to collaboratively. Different algorithmic meth-
ods can be implemented for the same sub-task to identify
the prevailing method.

Moving beyond benefits to algorithmic performance,
our methodology extends current state of the art through
detailed accuracy analysis. An important characteristic is that
each process is tied to specific accuracy; therefore a different
accuracy measure is assigned from each classifier giving a
more representative, spatially explicit accuracy value inherited
from the process used. This results in numerous advantages
when simulating on a new spatial scene:

Identification of Areas for Algorithmic Improvement and/or Ancillary Data
Acquisition

We know in advance the portion of pixels falling within
each module (process). This translates into knowledge of
problematic areas before even the actual simulation takes
place. For example, after filtering takes place and mostly

soil and 1SA remain, we know how many pixels fall within
the problematic [200, 250] brightness range. Using this as

a guide, we can decide whether we need to improve algorith-
mic performance through additional training and model
testing. Furthermore, if spectral discrimination is not feasible
a decision can be made to acquire ancillary data (e.g., high-
resolution imagery, lidar, or census data) that may enhance
our final product. Our approach can act as the basis for
image/data fusion algorithms.

Evaluation of Training Site Representation in Overall Scene

Traditional classifiers do not establish a within class relation-
ship between training and simulation datasets. Our method-
ology not only propagates classification accuracy as men-
tioned above but also establishes linkages for every class
expressing variability in the training and simulation datasets.
For example, Table 7 shows multiple corresponding training
and simulation portions within each class. This can be used
as a guide for future training data acquisition.

Support for Multiple Specialists Engagement

Our approach can establish a framework where the general
problem can be decomposed to multiple sub-problems

and subsequently assign specific sub-problems to different
scientists and/or research groups. More specifically, the
structured examination of error within the parameter space
at each level of the decision tree provides a basis for
engaging appropriate specialists in identifying methods

for the next stage of classification (e.g., vegetation versus
soil versus ISA classifiers). By the same token, multiple
scientists can compete for a sub-problem classifier using
different machine learning methods.

Straightforward Assessment of Results by Non-experts

Remote sensing products often act as a critical input to studies
from a variety of disciplines. However, non-experts have high
expectations from remote sensing products without realizing
potential sensor and modeling limitations. Therefore, there is a
clear need to incorporate advanced accuracy metrics associ-
ated with remote sensing products that express usefulness and
limitations of incorporated methodologies. As our results
section has demonstrated, accuracy maps are a natural product
of our multi-method framework.

Simulation Speed

We reserve the computationally expensive inputs (e.g.,
texture-based statistics) only for sub-tasks where conven-
tional statistics (e.g., normalized band differences) do not
provide adequate separation. By doing so, the computation-
ally expensive inputs are calculated only if necessary and
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for selected parts of the imagery, therefore accelerating the
simulation speed. This is not a major concern with current
computational power when simulating a single satellite
scene, but we envision utilization of this approach into
larger datasets at multiple time instances. Furthermore,
several classifiers can be employed in a parallel fashion to
accelerate simulation, utilizing multi-core processors.

In addition to the aforementioned benefits, our methodol-
ogy currently exhibits a significant drawback. As an expert-
based system, the selection of nodes and the assignment of
context behind their partitioning are not currently performed
in an automated manner. We have developed some statistical
tools that help us with exploratory analysis in low-dimensional
space, but still substantial human involvement is necessary.
This paper is acting as the proof-of-concept and establishes
the baseline for needed improvements. We are currently
testing incorporation of a brute force approach to automati-
cally select the best combination of algorithms. In the future,
it would also be interesting to see if seasonal variations can
be constrained and rectified in selected algorithms.
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